EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mineral Dissolution and Precipitation in Rock brine CO2 Systems

Download or read book Mineral Dissolution and Precipitation in Rock brine CO2 Systems written by and published by . This book was released on 2015 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-15
  • ISBN : 1119118670
  • Pages : 372 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Book Mineral Dissolution and Precipitation During CO2 Injection at the Frio I Brine Pilot

Download or read book Mineral Dissolution and Precipitation During CO2 Injection at the Frio I Brine Pilot written by and published by . This book was released on 2015 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation "C". Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation "C" sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

Book Fluid rock Interactions in a Carbon Storage Site Analogue  Green River  Utah

Download or read book Fluid rock Interactions in a Carbon Storage Site Analogue Green River Utah written by Niko Kampman and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Reactions between CO2-charged brines and reservoir minerals might either enhance the long-term storage of CO2 in geological reservoirs or facilitate leakage by corroding cap rocks and fault seals. Modelling the progress of such reactions is frustrated by uncertainties in the absolute mineral surface reaction rates and the significance of other rate limiting steps in natural systems. This study uses the chemical evolution of groundwater from the Jurassic Navajo Sandstone, part of a leaking natural accumulation of CO2 at Green River, Utah, in the Colorado Plateau, USA, to place constraints on the rates and potential controlling mechanisms of the mineral-fluid reactions,under elevated CO2 pressures, in a natural system. The progress of individual reactions, inferred from changes in groundwater chemistry is modelled using mass balance techniques. The mineral reactions are close to stoichiometric with plagioclase and K-feldspar dissolution largely balanced by precipitation of clay minerals and carbonate. Mineral modes, in conjunction with published surface area measurements and flow rates estimated from hydraulic head measurements, are then used to quantify the kinetics of feldspar dissolution. Maximum estimated dissolution rates for plagioclase and K-feldspar are 2x10-14 and 4x10-16 mol·m-2·s-1, respectively. Fluid ion-activity products are close to equilibrium (e.g. DGr for plagioclase between -2 and -10 kJ/mol) and lie in the region in which mineral surface reaction rates show a strong dependence on DGr. Local variation in DGr is attributed to the injection and disassociation of CO2 which initially depresses silicate mineral saturation in the fluid, promoting feldspar dissolution. With progressive flow through the aquifer, feldspar hydrolysis reactions consume H+ and liberate solutes to solution which increase mineral saturation in the fluid and rates slow as a consequence. The measured plagioclase dissolution rates at low DGr would be compatible with far-from-quilibrium rates of ~1x10-13 mol·m-2·s-1 as observed in some experimental studies. This suggests that the discrepancy between field and laboratory reaction rates may in part be explained by the differences in the thermodynamic state of natural and experimental fluids, with field-scale reactions occurring close to equilibrium whereas most laboratory experiments are run far-from-equilibrium. Surface carbonate deposits and cementation within the footwall of the local fault systems record multiple injections of CO2 into the Navajo Aquifer and leakage of CO2 from the site over ca. 400,000 years. The d18O, d13C and 87Sr/86Sr of these deposits record rapid rates of CO2 leakage (up to ~1000 tonnes/a) following injection of CO2, but rates differ by an order of magnitude between each fault, due to differences in the fault architecture. Elevated pCO2 enhances rates of feldspar dissolution in the host aquifer and carbonate precipitation in fracture conduits. Silicate mineral dissolution rates decline and carbonate precipitation rates increase as pH and the CO2 charge dissipate. The Sr/Ca of calcite cements record average precipitation rates of ~2x10-6 mol/m2/s, comparable to laboratory derived calcite precipitation rates in fluids with elevated Mn/Ca and Fe/Ca, at cc of ~1 to 3. This suggests that far-from-equilibrium carbonate precipitation, which blocks fracture conduits and causes the leaking system to self-seal, driven by CO2 degassing in the shallow subsurface, can be accurately modeled with laboratory derived rates. Sandstones altered in CO2 leakage conduits exhibit extensive dissolution of hematite grain coatings and are chemically bleached as a result. Measurements of Eh-pH conditions in the modern fluid, and modeling of paleo-Eh-pH conditions using calcite Fe and Mn concentrations, suggests that the CO2-charged groundwaters are reducing, due to their low dissolved O2 content and that pH suppression due to high pCO2 is capable of dissolving and transporting large concentrations of metals. Exhumed paleo-CO2 reservoirs along the crest of the Green River anticline have been identified using volatile hosting fluid inclusions. Paleo-CO2-charged fluids mobilized hydrocarbons and CH4 from deeper formations, enhancing the reductive dissolution of hematite, which produced spectacular km-scale bleached patterns in these sediment.

Book Geochemistry of Geologic CO2 Sequestration

Download or read book Geochemistry of Geologic CO2 Sequestration written by Donald J. DePaolo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 77 of Reviews in Mineralogy and Geochemistry focuses on important aspects of the geochemistry of geological CO2 sequestration. It is in large part an outgrowth of research conducted by members of the U.S. Department of Energy funded Energy Frontier Research Center (EFRC) known as the Center for Nanoscale Control of Geologic CO2 (NCGC). Eight out of the 15 chapters have been led by team members from the NCGC representing six of the eight partner institutions making up this center - Lawrence Berkeley National Laboratory (lead institution, D. DePaolo - PI), Oak Ridge National Laboratory, The Ohio State University, the University of California Davis, Pacific Northwest National Laboratory, and Washington University, St. Louis.

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

Download or read book A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, DOE is conducting pilot CO2 injection tests to evaluate the concept of geological sequestration. The injected CO2 is expected to react with the host rocks and these reactions can potentially alter the porosity, permeability, and mechanical properties of the host or cap rocks. Reactions can also result in precipitation of carbonate-containing minerals that favorably and permanently trap CO2 underground. Many numerical models have been used to predict these reactions for the carbon sequestration program. However, a firm experimental basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation of silicate dissolution rates at conditions pertinent to geological carbon sequestration. In this four year research grant (three years plus a one year no cost extension), seven (7) laboratory experiments of CO2-rock-water interactions were carried out. An experimental design allowed the collection of water samples during experiments in situ and thus prevented back reactions. Analysis of the in situ samples delineated the temporal evolution of aqueous chemistry because of CO2-rock-water interactions. The solid products of the experiments were retrieved at the end of the experimental run, and analyzed with a suite of advanced analytical and electron microscopic techniques (i.e., atomic resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron microprobe, X-ray diffraction, X-ray photoelectron spectroscopy (XPS)). As a result, the research project probably has produced one of the best data sets for CO2-rock-water interactions in terms of both aqueous solution chemistry and solid characterization. Three experiments were performed using the Navajo sandstone. Navajo sandstone is geologically equivalent to the Nugget sandstone, which is a target formation for a regional partnership injection project. Our experiments provided the experimental data on the potential CO2-rock-water interactions that are likely to occur in the aquifer. Geochemical modeling was performed to interpret the experimental results. Our single mineral (feldspar) experiments addressed a basic research need. i.e., the coupled nature of dissolution and precipitation reactions, which has universal implication to the reaction kinetics as it applied to CO2 sequestration. Our whole rock experiments (Navajo sandstone) addressed the applied research component, e.g., reacting Navajo sandstone with brine and CO2 has direct relevance on the activities of a number of regional partnerships. The following are the major findings from this project: (1) The project generated a large amount of experimental data that is central to evaluating CO2-water-rock interactions and providing ground truth to predictive models, which have been used and will inevitably be increasingly more used in carbon sequestration. (2) Results from the feldspar experiments demonstrated stronger coupling between dissolution and precipitation reactions. We show that the partial equilibrium assumption did not hold in the feldspar hydrolysis experiments (Zhu and Lu, submitted, Appendix A-2). The precipitation of clay minerals influenced dissolution of primary silicate in a much stronger way as previously envisioned. Therefore, our experimental data indicated a much more complex chemical kinetics as it has been applied to carbon sequestration program in terms of preliminary predictive models of CO2-rock-water interactions. Adopting this complexity (strong coupling) may influence estimates of mineral trapping and porosity/permeability for geological carbon sequestration. In general, our knowledge of the coupling of different reactions is poor, and we must consider the uncertainties resulting from our poor knowledge on this regard. (3) Our experimental results concur with previous findings that the role of dissolved CO2 is mostly to acidify the brine, but not change the mechanisms of reactions. This conclusion is based on careful paired experiments with and without CO2. (4) We observed strong chemical reactions between CO2 acidified brine with the Navajo sandstone. The laboratory experiments were conducted at a higher temperature (200 C) than that in the field ((almost equal to)90 C) in order to induce measurable chemical changes in the laboratory. However, field conditions are more acidic and reaction time is much longer (1000 years versus 10-80 days in the laboratory). Therefore, the conclusions on extensive reactions are relevant. We observed extensive dissolution of feldspars, and precipitation of clay minerals.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Groundwater Geochemistry

    Book Details:
  • Author : Broder J. Merkel
  • Publisher : Springer Science & Business Media
  • Release : 2008-05-30
  • ISBN : 3540746684
  • Pages : 230 pages

Download or read book Groundwater Geochemistry written by Broder J. Merkel and published by Springer Science & Business Media. This book was released on 2008-05-30 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: To understand hydrochemistry and to analyze natural as well as man-made impacts on aquatic systems, hydrogeochemical models have been used since the 1960’s and more frequently in recent times. Numerical groundwater flow, transport, and geochemical models are important tools besides classical deterministic and analytical approaches. Solving complex linear or non-linear systems of equations, commonly with hundreds of unknown parameters, is a routine task for a PC. Modeling hydrogeochemical processes requires a detailed and accurate water analysis, as well as thermodynamic and kinetic data as input. Thermodynamic data, such as complex formation constants and solubility-products, are often provided as databases within the respective programs. However, the description of surface-controlled reactions (sorption, cation exchange, surface complexation) and kinetically controlled reactions requires additional input data. Unlike groundwater flow and transport models, thermodynamic models, in principal, do not need any calibration. However, considering surface-controlled or kinetically controlled reaction models might be subject to calibration. Typical problems for the application of geochemical models are: • speciation • determination of saturation indices • adjustment of equilibria/disequilibria for minerals or gases • mixing of different waters • modeling the effects of temperature • stoichiometric reactions (e.g. titration) • reactions with solids, fluids, and gaseous phases (in open and closed systems) • sorption (cation exchange, surface complexation) • inverse modeling • kinetically controlled reactions • reactive transport Hydrogeochemical models depend on the quality of the chemical analysis, the boundary conditions presumed by the program, theoretical concepts (e.g.

Book Study of Surface Complexation and Mineral Dissolution During Water rock Interaction in High Salinity Waterflooding at Elevated Temperatures

Download or read book Study of Surface Complexation and Mineral Dissolution During Water rock Interaction in High Salinity Waterflooding at Elevated Temperatures written by Sameer Salasakar and published by . This book was released on 2017 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: "High salinity waterflooding for carbonate reservoirs is efficient and cheap method used for improved oil recovery. Various mechanisms have been proposed including adsorption/desorption on rock surface, mineral dissolution and precipitation, multicomponent ion exchange, interfacial tension reduction, fine migration and double layer expansion. These all process alter the wettability which leads to improved oil recovery. Objective of this study was to understand processes that occur during water-rock interaction when high salinity water is flooded into the reservoir. In this work, effect of temperature on water-rock interaction is studied along with effect of pH and specific surface areas of calcite at normal and elevated temperatures. To understand processes occurring on surface of rock, reactive transport model for brine-rock interaction was developed. It included surface complexation and mineral dissolution processes which contribute towards wettability alteration. Effect of pH, specific surface area of calcite on surface complexation and mineral dissolution at normal and elevated temperatures showed that rate of mineral dissolution was higher than surface complexation reactions. Calcite dissolved volumes for varied composition of injected brine were compared with oil recovery percentages. The results showed that calcite dissolution increased with increase in oil recovery at higher temperatures. The study showed that improved oil recovery is complicated process which is result of various processes and steps involved. Sensitivity of each process and step for wettability alteration can be different depending on environment"--Abstract, page iii.

Book Pore scale Investigations of Carbon Dioxide Applications for Enhanced Oil Recovery and Geological Sequestration

Download or read book Pore scale Investigations of Carbon Dioxide Applications for Enhanced Oil Recovery and Geological Sequestration written by Dayo A. Akindipe and published by . This book was released on 2022 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) capture, utilization, and storage (CCUS) is becoming a major climate change mitigation strategy. Some key issues that have limited accelerated development are injectivity losses due to near-wellbore salt precipitation during geological sequestration and poor displacement efficiency during utilization for enhanced oil recovery. To understand and mitigate these challenges, a pore-scale approach that combines flow tests with digital rock physics is proposed. This was implemented to visualize, quantify, and assess CO2/oil/brine/rock interactions that culminate in salt precipitation. It was also used to evaluate the pore morphology changes and the oil recovery performance encountered during carbonated water injection (CWI). In the studies on salt precipitation, three evolution stages—advection-dominated, transition, and diffusion-dominated evaporative drying—were observed. A new mechanism that occurs during the transition from advection to diffusion-limited flow termed reverse solute diffusion was also delineated. This mechanism was typified by upward solute diffusion from regions of lower concentration within the aqueous phase to a highly concentrated evaporating front. The time required for precipitation initiation was shorter in an intermediate-wet carbonate than in a weakly oil-wet carbonate. Higher amounts of salt deposits were formed in the more hydrophilic (intermediate-wet) carbonate, leading to an intensification of porosity reduction in this rock. In addition, the presence of oil within the pore space did not hinder the precipitation process but suppressed the reverse flow of solutes toward the evaporation front, thereby creating localized precipitation at the front. Mineral dissolution via CWI-induced reactive transport is one way to increase near-wellbore injectivity. In experiments involving oil/carbonated water/carbonate rock systems, flow channeling resulted in significant mineral dissolution. This led to the formation of high-conductivity wormholes with two distinct patterns. The first was a conical wormhole formed at a low flow rate where diffusion was significant. Whereas, the second was a dominant wormhole developed at a higher injection rate where advection controlled the transport of reactive species to the flow boundaries. Experiments performed to determine the underlying oil recovery mechanisms during CWI in oil-wet carbonate rocks revealed that carbonated low salinity seawater containing definite amounts of potential determining ions (Ca2+, Mg2+, and SO42−) promotes superior oil recovery compared to other brine samples. This enhanced performance was evidenced by the dominance of wettability reversal to near-neutral states, which created a more favorable capillary pressure required for pore-level displacements. Wettability alteration originated from the reduction in electrostatic attraction between oil/brine and brine/rock interfaces through the surface adsorption of SO42− ions in low-pH environments.

Book EGS Rock Reactions with Supercritical CO2 Saturated with Water and Water Saturated with Supercritical CO2

Download or read book EGS Rock Reactions with Supercritical CO2 Saturated with Water and Water Saturated with Supercritical CO2 written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving 'free' connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

Book Geological Storage of CO2 in Deep Saline Formations

Download or read book Geological Storage of CO2 in Deep Saline Formations written by Auli Niemi and published by Springer. This book was released on 2017-02-24 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.

Book Development of Unconventional Reservoirs

Download or read book Development of Unconventional Reservoirs written by Reza Rezaee and published by MDPI. This book was released on 2020-04-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Book Mineral Sequestration of Carbon Dixoide in a Sandstone Shale System

Download or read book Mineral Sequestration of Carbon Dixoide in a Sandstone Shale System written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The major CO2 trapping minerals are dawsonite and ankerite. The CO2 mineral-trapping capacity after 100,000 years reaches about 90 kg per cubic meter of the medium. The CO2 trapping capacity depends on primary mineral composition. Precipitation of siderite and ankerite requires Fe+2 supplied mainly by chlorite and some by hematite dissolution and reduction. Precipitation of dawsonite requires Na+ provided by oligoclase dissolution. The initial abundance of chlorite and oligoclase therefore affects the CO2 mineral trapping capacity. The sequestration time required depends on the kinetic rate of mineral dissolution and precipitation. Dawsonite reaction kinetics is not well understood, and sensitivity regarding the precipitation rate was examined. The addition of CO2 as secondary carbonates results in decreased porosity. The leaching of chemical constituents from the interior of the shale causes slightly increased porosity. The limited information currently available for the mineralogy of natural high-pressure CO2 gas reservoirs is also generally consistent with our simulation. The ''numerical experiments'' give a detailed understanding of the dynamic evolution of a sandstone-shale geochemical system.

Book Kinetics of Water Rock Interaction

Download or read book Kinetics of Water Rock Interaction written by Susan Brantley and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geochemical kinetics as a topic is now of importance to a wide range of geochemists in academia, industry, and government, and all geochemists need a rudimentary knowledge of the field. This book summarizes the fundamentals of geochemical kinetics with examples drawn especially from mineral dissolution and precipitation. It also encompasses discussion of high temperature processes and global geochemical cycle modeling. Analysis of textures of rocks, sediments, and mineral surfaces are incorporated throughout and provide a sub-theme of the book.

Book Modeling The Effects Of Salt Precipitation And Kinetic Mineral Reaction On Well Injectivity Due To Carbon Dioxide Injection In Deep Saline Aquifers

Download or read book Modeling The Effects Of Salt Precipitation And Kinetic Mineral Reaction On Well Injectivity Due To Carbon Dioxide Injection In Deep Saline Aquifers written by Kojo Yeboa and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Little is known about the complex processes taking place between CO2, the host formation, and in-situ brine at the conditions found within deep saline aquifers during CO2 injection for the purposes of long term sequestration. Mineral dissolution and precipitation reactions which take place in response to the acidic environment formed once CO2 is injected in addition to the precipitation of mineral halite induced by the vaporization of the brine phase into the flowing dry CO2 phase have the potential to alter formation porosity and permeability, negatively impacting well injectivity. A commercial reservoir simulator was used to develop several studies in order to observe the scale and extent of host mineral dissolution and precipitation as well as halite mineral precipitation following CO2 injection into a siliciclastic deep saline formation. Dissolution was observed to be the predominant mineral reaction however limited scale resulted in minimal impact on well injectivity. Halite precipitation in the near well region was found to provide limited impacts on well injectivity. Following a sensitivity study, the initial formation salinity was found to be a property significant in impacting halite precipitation, however even at high saline concentrations impacts to well injectivity are considered of little note and could be effectively negated with a relatively brief three-month fresh water injection period prior to the onset of CO2 injection.