EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Coding for MIMO Communication Systems

Download or read book Coding for MIMO Communication Systems written by Tolga M. Duman and published by John Wiley & Sons. This book was released on 2008-03-11 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coding for MIMO Communication Systems is a comprehensive introduction and overview to the various emerging coding techniques developed for MIMO communication systems. The basics of wireless communications and fundamental issues of MIMO channel capacity are introduced and the space-time block and trellis coding techniques are covered in detail. Other signaling schemes for MIMO channels are also considered, including spatial multiplexing, concatenated coding and iterative decoding for MIMO systems, and space-time coding for non-coherent MIMO channels. Practical issues including channel correlation, channel estimation and antenna selection are also explored, with problems at the end of each chapter to clarify many important topics. A comprehensive book on coding for MIMO techniques covering main strategies Theories and practical issues on MIMO communications are examined in detail Easy to follow and accessible for both beginners and experienced practitioners in the field References at the end of each chapter for further reading Can be used with ease as a research book, or a textbook on a graduate or advanced undergraduate level course This book is aimed at advanced undergraduate and postgraduate students, researchers and practitioners in industry, as well as individuals working for government, military, science and technology institutions who would like to learn more about coding for MIMO communication systems.

Book Fundamentals of MIMO Wireless Communications

Download or read book Fundamentals of MIMO Wireless Communications written by Rakhesh Singh Kshetrimayum and published by Cambridge University Press. This book was released on 2017-04-17 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Provides a solid understanding of the essential concepts of MIMO wireless communications"--

Book Advanced Mimo Systems

    Book Details:
  • Author : Kosai Raoof
  • Publisher : ScientificResearchPublishing
  • Release : 2009
  • ISBN : 1935068024
  • Pages : 252 pages

Download or read book Advanced Mimo Systems written by Kosai Raoof and published by ScientificResearchPublishing. This book was released on 2009 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Massive MIMO Systems

Download or read book Massive MIMO Systems written by Kazuki Maruta and published by MDPI. This book was released on 2020-07-03 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.

Book Foundations of MIMO Communication

Download or read book Foundations of MIMO Communication written by Robert W. Heath (Jr) and published by Cambridge University Press. This book was released on 2018-12-06 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, comprehensive and coherent treatment of MIMO communication, drawing on ideas from information theory and signal processing.

Book Massive MIMO

    Book Details:
  • Author : Hien Quoc Ngo
  • Publisher : Linköping University Electronic Press
  • Release : 2015-01-16
  • ISBN : 9175191474
  • Pages : 69 pages

Download or read book Massive MIMO written by Hien Quoc Ngo and published by Linköping University Electronic Press. This book was released on 2015-01-16 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology for next generations of wireless systems. With massive antenna arrays at the BS, for most propagation environments, the channels become favorable, i.e., the channel vectors between the users and the BS are (nearly) pairwisely orthogonal, and hence, linear processing is nearly optimal. A huge throughput and energy efficiency can be achieved due to the multiplexing gain and the array gain. In particular, with a simple power control scheme, Massive MIMO can offer uniformly good service for all users. In this dissertation, we focus on the performance of Massive MIMO. The dissertation consists of two main parts: fundamentals and system designs of Massive MIMO. In the first part, we focus on fundamental limits of the system performance under practical constraints such as low complexity processing, limited length of each coherence interval, intercell interference, and finite-dimensional channels. We first study the potential for power savings of the Massive MIMO uplink with maximum-ratio combining (MRC), zero-forcing, and minimum mean-square error receivers, under perfect and imperfect channels. The energy and spectral efficiency tradeoff is investigated. Secondly, we consider a physical channel model where the angular domain is divided into a finite number of distinct directions. A lower bound on the capacity is derived, and the effect of pilot contamination in this finite-dimensional channel model is analyzed. Finally, some aspects of favorable propagation in Massive MIMO under Rayleigh fading and line-of-sight (LoS) channels are investigated. We show that both Rayleigh fading and LoS environments offer favorable propagation. In the second part, based on the fundamental analysis in the first part, we propose some system designs for Massive MIMO. The acquisition of channel state information (CSI) is very importantin Massive MIMO. Typically, the channels are estimated at the BS through uplink training. Owing to the limited length of the coherence interval, the system performance is limited by pilot contamination. To reduce the pilot contamination effect, we propose an eigenvalue-decomposition-based scheme to estimate the channel directly from the received data. The proposed scheme results in better performance compared with the conventional training schemes due to the reduced pilot contamination. Another important issue of CSI acquisition in Massive MIMO is how to acquire CSI at the users. To address this issue, we propose two channel estimation schemes at the users: i) a downlink "beamforming training" scheme, and ii) a method for blind estimation of the effective downlink channel gains. In both schemes, the channel estimation overhead is independent of the number of BS antennas. We also derive the optimal pilot and data powers as well as the training duration allocation to maximize the sum spectral efficiency of the Massive MIMO uplink with MRC receivers, for a given total energy budget spent in a coherence interval. Finally, applications of Massive MIMO in relay channels are proposed and analyzed. Specifically, we consider multipair relaying systems where many sources simultaneously communicate with many destinations in the same time-frequency resource with the help of a massive MIMO relay. A massive MIMO relay is equipped with many collocated or distributed antennas. We consider different duplexing modes (full-duplex and half-duplex) and different relaying protocols (amplify-and-forward, decode-and-forward, two-way relaying, and one-way relaying) at the relay. The potential benefits of massive MIMO technology in these relaying systems are explored in terms of spectral efficiency and power efficiency.

Book Satellite Communications

Download or read book Satellite Communications written by Nazzareno Diodato and published by BoD – Books on Demand. This book was released on 2010-09-18 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking.

Book MIMO System Technology for Wireless Communications

Download or read book MIMO System Technology for Wireless Communications written by George Tsoulos and published by CRC Press. This book was released on 2018-10-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: For broadband communications, it was frequency division multiplexing. For optical communications, it was wavelength division multiplexing. Then, for all types of networks it was code division. Breakthroughs in transmission speed were made possible by these developments, heralding next-generation networks of increasing capability in each case. The basic idea is the same: more channels equals higher throughput. For wireless communications, it is space-time coding using multiple-input-multiple-output (MIMO) technology. Providing a complete treatment of MIMO under a single cover, MIMO System Technology for Wireless Communications assembles coverage on all aspects of MIMO technology along with up-to-date information on key related issues. Contributors from leading academic and industrial institutions around the world share their expertise and lend the book a global perspective. They lead you gradually from basic to more advanced concepts, from propagation modeling and performance analysis to space-time codes, various systems, implementation options and limitations, practical system development considerations, field trials, and network planning issues. Linking theoretical analysis to practical issues, the book does not limit itself to any specific standardization or research/industrial initiatives. MIMO is the catalyst for the next revolution in wireless systems, and MIMO System Technology for Wireless Communications lays a thorough and complete foundation on which to build the next and future generations of wireless networks.

Book Space Time Processing for MIMO Communications

Download or read book Space Time Processing for MIMO Communications written by Alex Gershman and published by John Wiley & Sons. This book was released on 2005-08-05 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Exciting theoretical advances have been complemented by rapid transition of research results to industry products and services, thus creating a vibrant new area. Space-time processing is a broad area, owing in part to the underlying convergence of information theory, communications and signal processing research that brought it to fruition. This book presents a balanced and timely introduction to space-time processing for MIMO communications, including highlights of emerging trends, such as spatial multiplexing and joint transceiver optimization. Includes detailed coverage of wireless channel sounding, modelling, characterization and model validation. Provides state-of-the-art research results on space-time coding, including comprehensive tutorial coverage of orthogonal space-time block codes. Discusses important recent developments in spatial multiplexing, transmit beam-forming, pre-coding and joint transceiver design for the multi-user MIMO downlink using full or partial CSI. Illustrates all theory with numerous examples gleaned from cutting-edge research from around the globe. This valuable resource will appeal to engineers, developers and consultants involved in the design and implementation of space-time processing for MIMO communications. Its accessible format, amply illustrated with real world case studies, contains relevant, detailed advice for postgraduate students and researchers specializing in this field.

Book MIMO Communication for Cellular Networks

Download or read book MIMO Communication for Cellular Networks written by Howard Huang and published by Springer Science & Business Media. This book was released on 2011-11-19 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user, multiuser, network MIMO technologies and system-level aspects of cellular networks, including channel modeling, resource scheduling, interference mitigation, and simulation methodologies. The key concepts are presented with sufficient generality to be applied to a wide range of wireless systems, including those based on cellular standards such as LTE, LTE-Advanced, WiMAX, and WiMAX2. The book is intended for use by graduate students, researchers, and practicing engineers interested in the physical-layer design of state-of-the-art wireless systems.

Book Cell Free Massive MIMO

    Book Details:
  • Author : Giovanni Interdonato
  • Publisher : Linköping University Electronic Press
  • Release : 2020-09-09
  • ISBN : 9179298087
  • Pages : 75 pages

Download or read book Cell Free Massive MIMO written by Giovanni Interdonato and published by Linköping University Electronic Press. This book was released on 2020-09-09 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.

Book Using Cross Layer Techniques for Communication Systems

Download or read book Using Cross Layer Techniques for Communication Systems written by Rashvand, Habib F. and published by IGI Global. This book was released on 2012-04-30 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the existing layering infrastructure--used globally for designing computers, data networks, and intelligent distributed systems and which connects various local and global communication services--is conceptually correct and pedagogically elegant, it is now well over 30 years old has started create a serious bottleneck. Using Cross-Layer Techniques for Communication Systems: Techniques and Applications explores how cross-layer methods provide ways to escape from the current communications model and overcome the challenges imposed by restrictive boundaries between layers. Written exclusively by well-established researchers, experts, and professional engineers, the book will present basic concepts, address different approaches for solving the cross-layer problem, investigate recent developments in cross-layer problems and solutions, and present the latest applications of the cross-layer in a variety of systems and networks.

Book MIMO Wireless Communications over Generalized Fading Channels

Download or read book MIMO Wireless Communications over Generalized Fading Channels written by Brijesh Kumbhani and published by CRC Press. This book was released on 2017-07-12 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: MIMO systems have been known to better the quality of service for wireless communication systems. This book discusses emerging techniques in MIMO systems to reduce complexities and keep benefits unaffected at the same time. It discusses about benefits and shortcomings of various MIMO technologies like spatial multiplexing, space time coding, spatial modulation, transmit antenna selection and various power allocation schemes to optimize the performance. Crux of the book is focus on MIMO communication over generalized fading channels as they can model the propagation of signals in a non-homogeneous environment. Relevant MATLAB codes are also included in the appendices. Book is aimed at graduate students and researchers in electronics and wireless engineering specifically interested in electromagnetic theory, antennas and propagation, future wireless systems, signal processing.

Book MIMO Wireless Communications

Download or read book MIMO Wireless Communications written by Ezio Biglieri and published by Cambridge University Press. This book was released on 2007-01-08 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communications systems, and is already at the core of several wireless standards. Exploiting multipath scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This 2007 book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space-time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems.

Book Adaptation in Wireless Communications   2 Volume Set

Download or read book Adaptation in Wireless Communications 2 Volume Set written by Mohamed Ibnkahla and published by CRC Press. This book was released on 2018-10-08 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt: The widespread use of adaptation techniques has helped to meet the increased demand for new applications. From adaptive signal processing to cross layer design, Adaptation in Wireless Communications covers all aspects of adaptation in wireless communications in a two-volume set. Each volume provides a unified framework for understanding adaptation and relates various specializations through common terminologies. In addition to simplified state-of-the-art cross layer design approaches, they also describe advanced techniques, such as adaptive resource management, 4G communications, and energy and mobility aware MAC protocols.

Book Spectrum Sharing Between Radars and Communication Systems

Download or read book Spectrum Sharing Between Radars and Communication Systems written by Awais Khawar and published by Springer. This book was released on 2017-06-12 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents spectrum sharing efforts between cellular systems and radars. The book addresses coexistence algorithms for radar and communication systems. Topics include radar and cellular system models; spectrum sharing with small radar systems; spectrum sharing with large radar systems; radar spectrum sharing with coordinated multipoint systems (CoMP); and spectrum sharing with overlapped MIMO radars. The primary audience is the radar and wireless communication community, specifically people in industry, academia, and research whose focus is on spectrum sharing. The topics are of interest for both communication and signal processing technical groups. In addition, students can use MATLAB code to enhance their learning experience.

Book Mobile WiMAX

Download or read book Mobile WiMAX written by Sassan Ahmadi and published by Academic Press. This book was released on 2010-12-22 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the new IEEE 802.16m standard, this is the first book to take a systematic, top-down approach to describing Mobile WiMAX and its next generation, giving detailed algorithmic descriptions together with explanations of the principles behind the operation of individual air-interface protocols and network components. Features: - A systematic and detailed, top-down approach to the design of 4G cellular systems based on IEEE 802.16m and 3GPP LTE/LTE-Advanced technologies - A systematic approach to understanding IEEE 802.16m radio access network and mobile WiMAX network architecture and protocols - The first comprehensive technical reference on the design, development and performance evaluation of IMT-Advanced systems, including the theoretical background and design principles as well as implementation considerations About the author: The author, chief architect and technical lead of the IEEE 802.16m project at Intel Corporation, initiated and masterminded the development of the IEEE 802.16m standard and has been one of the leading technical drivers in its standardization process in IEEE. The author was also a leading technical contributor to the definition and development of requirements and evaluation methodology for the IMT-Advanced systems in ITU-R. Reflecting the author's 20+ years expertise and experience, the book provides an in-depth, systematic and structured technical reference for professional engineers, researchers, and graduate students working in cellular communication systems, radio air-interface technologies, cellular communications protocols, advanced radio access technologies for 4G systems, and broadband cellular standards. - A systematic and detailed, top-down approach to the design of 4G cellular systems based on IEEE 802.16m and 3GPP LTE/LTE-Advanced technologies - A systematic approach to understanding IEEE 802.16m radio access network and mobile WiMAX network architecture and protocols - The first comprehensive technical reference on the design, development and performance evaluation of IMT-Advanced systems, including the theoretical background and design principles as well as implementation considerations