EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Evolution of the Microstructure in Microcrystalline Silicon Prepared by Very High Frequency Glow discharge Using Hydrogen Dilution

Download or read book Evolution of the Microstructure in Microcrystalline Silicon Prepared by Very High Frequency Glow discharge Using Hydrogen Dilution written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A series of samples was deposited by very high frequency glow discharge in a plasma of silane diluted in hydrogen in concentrations SiH4/(SiH4 + H2) varying from 100% to 1.25%. For silane concentrations below 8.4%, a phase transition between amorphous and microcrystalline silicon occurs. Microcrystalline silicon has been characterized by transmission electron microscopy (TEM) and x-ray diffraction. The medium-resolution TEM observations show that below the transition, the microstructure of microcrystalline silicon varies in a complex way, showing a large variety of different growth structures. For the sample close to the phase transition, one observes elongated nanocrystals of silicon embedded in an amorphous matrix followed at intermediate dilution by dendritic growth, and, finally, at very high dilution level, one observes columnar growth. X-ray diffraction data evidence a (220) crystallographic texture; the comparison of the grain sizes as evaluated from TEM observations and those determined using Scherrer's equation illustrates the known limitations of the latter method for grain size determination in complex microstructures.

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-02
  • ISBN : 9780470091272
  • Pages : 502 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-02 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Practical Handbook of Photovoltaics

Download or read book Practical Handbook of Photovoltaics written by T. Markvart and published by Elsevier. This book was released on 2003-10-30 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of photovoltaics.

Book Introduction to Microfabrication

Download or read book Introduction to Microfabrication written by Sami Franssila and published by John Wiley & Sons. This book was released on 2010-10-29 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e

Book Solar Cells

Download or read book Solar Cells written by Tom Markvart and published by Elsevier. This book was released on 2004-12-15 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: The capture and use of solar energy has been growing for many years, but only in recent times have advances in design and manufacture allowed us to see the incorporation of solar energy as a significant player in the renewable energy arena. Solar cells are at the heart of any photovoltaic system and in this book the various types are described and their characteristics reviewed. Going beyond materials, design and function, ‘Solar Cells’ also covers their testing, monitoring and calibration thus providing a comprehensive account of current activity in this important field of research and industry. ‘Solar Cells’ has been abstracted from the recent ‘Practical Handbook of Photovoltaics’ by the same editors (ISBN 185617 3909. 2003: Elsevier) Internationally-respected contributors from industry and academia Abstracted from ‘The Practical Handbook of Photovoltaics' by the same Editors A comprehensive source-book on all aspects of solar cells

Book From Amorphous to Microcrystalline Silicon Films Prepared by Hydrogen Dilution Using the VHF  70 MHz  GD Technique

Download or read book From Amorphous to Microcrystalline Silicon Films Prepared by Hydrogen Dilution Using the VHF 70 MHz GD Technique written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The amorphous and microcrystalline silicon films have been prepared by hydrogen dilution from pure silane to silane concentrations ≥1.25%. At silane concentrations of less than 10%, a transition from the amorphous phase to the microcrystalline phase can be observed. X-ray diffraction spectroscopy indicates a preferential growth of the crystallites in the [220] direction. Additionally, the transition into the microcrystalline regime is accompanied by a shrinking of the optical gap, a reduction in hydrogen content and by a modified trend of the deposition rate. The observed changes in the infrared absorption modes indicate modifications in the hydrogen bonding and can be correlated with results known from monocrystalline silicon. Close to the transition zone, but still in the amorphous regime, the hydrogen content is increased, whereas the microstructure parameter reaches its smallest value. Precisely these films have a 0.06 eV higher optical gap and a reduced defect density by a factor of 4 as compared to a-Si:H layers prepared from pure silane.

Book Advanced Silicon Materials for Photovoltaic Applications

Download or read book Advanced Silicon Materials for Photovoltaic Applications written by Sergio Pizzini and published by John Wiley & Sons. This book was released on 2012-06-07 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, finding a way to manufacture a specific solar grade feedstock in large quantities, at a low cost while maintaining the quality needed, still remains a crucial issue. Thin film and quantum confinement-based silicon cells might be a complementary solution. Advanced Silicon Materials for Photovoltaic Applications has been designed to describe the full potentialities of silicon as a multipurpose material and covers: Physical, chemical and structural properties of silicon Production routes including the promise of low cost feedstock for PV applications Defect engineering and the role of impurities and defects Characterization techniques, and advanced analytical techniques for metallic and non-metallic impurities Thin film silicon and thin film solar cells Innovative quantum effects, and 3rd generation solar cells With contributions from internationally recognized authorities, this book gives a comprehensive analysis of the state-of-the-art of process technologies and material properties, essential for anyone interested in the application and development of photovoltaics.

Book Amorphous and Nanocrystalline Silicon Science and Technology 2004  Volume 808

Download or read book Amorphous and Nanocrystalline Silicon Science and Technology 2004 Volume 808 written by Materials Research Society. Meeting and published by . This book was released on 2004-09-03 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book celebrates 20 years of MRS symposia on the topic of amorphous silicon. Contributors showed that the simplified theories developed to explain the limited experimental information available in the early eighties have spurred more sophisticated experimentation - either refining the early understanding or making it irrelevant. The differences of opinion that continue to exist and emerge are probably the hallmark of the amazing vitality of this field. Applications range from 'mature' thin-film transistors, solar cells and image sensors, to the 'emerging' possibility of erbium-doped nanocrystalline silicon-based materials for lasers and amorphous silicon quantum dots for luminescent devices. The book discusses material characterization, growth processes and devices. Each chapter is further subdivided into sections that group papers around common themes. Topics include: nanomaterials; electronic structure; metastable effects; understanding of growth processes; laser-induced crystallization; metal-induced crystallization; other growth techniques; newer devices; solar cells and thin-film transistors.

Book Electrical Properties and Degradation Kinetics of Compensated Hydrogenated Microcrystalline Silicon Deposited by Very High frequency glow Discharge

Download or read book Electrical Properties and Degradation Kinetics of Compensated Hydrogenated Microcrystalline Silicon Deposited by Very High frequency glow Discharge written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High rate growth of hydrogenated amorphous and microcrystalline silicon for thin film silicon solar cells using dynamic very high frequency plasma enhanced chemical vapor deposition

Download or read book High rate growth of hydrogenated amorphous and microcrystalline silicon for thin film silicon solar cells using dynamic very high frequency plasma enhanced chemical vapor deposition written by Thomas Zimmermann and published by Forschungszentrum Jülich. This book was released on 2013 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intrinsic Microcrystalline Silicon    c Si H  Deposited by VHF GD  very High Frequency glow Discharge   a New Material for Photovoltaics and Optoelectronics

Download or read book Intrinsic Microcrystalline Silicon c Si H Deposited by VHF GD very High Frequency glow Discharge a New Material for Photovoltaics and Optoelectronics written by and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Growth and Characterization of Microcrystalline Silicon Films and Devices Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition

Download or read book Growth and Characterization of Microcrystalline Silicon Films and Devices Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition written by Joshua Ali Graves and published by . This book was released on 2003 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is a report of the work done to grow hydrogenated microcrystalline Si materials and p-n junction photovoltaic devices using a 45MHz (VHF) PECVD process. Several parameters such as hydrogen dilution during growth, pressure, growth temperature, and ion bombardment were systematically varied during the growth process to study their effects on crystallinity and device properties. Crystallinity of the films was studied using Raman and x-ray diffraction techniques. It was found that the typical grain size was in the range of 10-25 nm, with larger grain sizes being obtained at higher deposition temperatures. It was also found that as the deposition pressure increased, the crystalline fraction decreased. This behavior is attributed to the decrease of ion bombardment at higher pressures. Optical measurements revealed the films to have absorption characteristics similar to those of c-Si. p+/n/n+ devices were fabricated on stainless steel and semi-transparent Mo/tin oxide substrates. Capacitance spectroscopy was used to estimate total defect and dopant densities in the base layer material. Good quality devices with fill factors approaching [difference]65% and open-circuit voltages of [difference]0.45 V could be fabricated using this technique. Diffusion length of holes in this material was estimated using quantum efficiency vs. voltage techniques, and it was found to be in the range of 1.2 micrometers.

Book Plasma Deposition of Amorphous Silicon Based Materials

Download or read book Plasma Deposition of Amorphous Silicon Based Materials written by Pio Capezzuto and published by Elsevier. This book was released on 1995-10-10 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Focuses on the plasma chemistry of amorphous silicon-based materials Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced Features an international group of contributors Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices