EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microscopic Scale Analysis of Acoustic Propagation in Periodic Porous Media

Download or read book Microscopic Scale Analysis of Acoustic Propagation in Periodic Porous Media written by Andrew Michael Chapman and published by . This book was released on 1991 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Waves in Periodic Structures  Metamaterials  and Porous Media

Download or read book Acoustic Waves in Periodic Structures Metamaterials and Porous Media written by Noé Jiménez and published by Springer Nature. This book was released on 2021-11-03 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by Jean Allard and published by John Wiley & Sons. This book was released on 2009-10-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The first edition of this book is considered the bible of this topic... Suffice it to say that there is no other published treatise that approaches the depth of treatment offered by this book. The coverage is the state of the published art, while the added contents cover the new known developments in the field." Haisam Osman; Technology Development Manager, United Launch Alliance This long-awaited second edition of a respected text from world leaders in the field of acoustic materials covers the state of the art with a depth of treatment unrivalled elsewhere. Allard and Atalla employ a logical and progressive approach that leads to a thorough understanding of porous material modelling. The first edition of Propagation of Sound in Porous Media introduced the basic theory of acoustics and the related techniques. Research and development in sound absorption has however progressed significantly since the first edition, and the models and methods described, at the time highly technical and specialized, have since become main stream. In this second edition, several original topics have been revisited and practical prediction methods and industrial applications have been added that increase the breadth of its appeal to both academics and practising engineers. New chapters have also been added on numerical modeling in both low (finite element) and high frequency (Transfer Matrix Method). Collating ‘must-have’ information for engineers working in sound and vibration, Propagation of Sound in Porous Media, 2nd edition offers an indisputable reference to a diverse audience; including graduate students and academics in mechanical & civil engineering, acoustics and noise control, as well as practising mechanical, chemical and materials engineers in the automotive, rail, aerospace, building and civil industries.

Book Acoustics of Porous Media

Download or read book Acoustics of Porous Media written by Thierry Bourbié and published by Editions TECHNIP. This book was released on 1987 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by J.F. Allard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Book Macroscopic Theory of Sound Propagation in Rigid framed Porous Materials Allowing for Spatial Dispersion

Download or read book Macroscopic Theory of Sound Propagation in Rigid framed Porous Materials Allowing for Spatial Dispersion written by Navid Nemati and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is dedicated to present and validate a new and generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid. This theory allows to go beyond the limits of the classical local theory and within the limits of linear theory, to take not only temporal dispersion, but also spatial dispersion into account. In the framework of the new approach, a homogenization procedure is proposed to upscale the dynamics of sound propagation from Navier-Stokes-Fourier scale to the volume-average scale, through solving two independent microscopic action-response problems. Contrary to the classical method of homogenization, there is no length-constraint to be considered alongside of the development of the new method, thus, there is no frequency limit for the medium effective properties to be valid. In absence of solid matrix, this procedure leads to Kirchhoff-Langevin's dispersion equation for sound propagation in viscothermal fluids. The new theory and upscaling procedure are validated in three cases corresponding to three different periodic microgeometries of the porous structure. Employing a semi-analytical method in the simple case of cylindrical circular tubes filled with a viscothermal fluid, it is found that the wavenumbers and impedances predicted by nonlocal theory match with those of the long-known Kirchhoff's exact solution, while the results by local theory (Zwikker and Kosten's) yield only the wavenumber of the least attenuated mode, in addition, with a small discrepancy compared to Kirchhoff's. In the case where the porous medium is made of a 2D square network of cylindrical solid inclusions, the frequency-dependent phase velocities of the least attenuated mode are computed based on the local and nonlocal approaches, by using direct Finite Element numerical simulations. The phase velocity of the least attenuated Bloch wave computed through a completely different quasi-exact multiple scattering method taking into account the viscothermal effects, shows a remarkable agreement with those obtained by the nonlocal theory in a wide frequency range. When the microgeometry is in the form of daisy chained Helmholtz resonators, using the upscaling procedure in nonlocal theory and a plane wave modelling lead to two effective density and bulk modulus functions in Fourier space. In the framework of the new upscaling procedure, Zwikker and Kosten's equations governing the pressure and velocity fields' dynamics averaged over the crosssections of the different parts of Helmholtz resonators, are employed in order to coarse-grain them to the scale of a periodic cell containing one resonator. The least attenuated wavenumber of the medium is obtained through a dispersion equation established via nonlocal theory, while an analytical modelling is performed, independently, to obtain the least attenuated Bloch mode propagating in the medium, in a frequency range where the resonance phenomena can be observed. The results corresponding to these two different methods show that not only the Bloch wave modelling, but also, especially, the modelling based on the new theory can describe the resonance phenomena originating from the spatial dispersion effects present in the macroscopic dynamics of the matarial.

Book Mathematical Models for Poroelastic Flows

Download or read book Mathematical Models for Poroelastic Flows written by Anvarbek Meirmanov and published by Springer Science & Business Media. This book was released on 2013-11-29 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.

Book Insights and Innovations in Structural Engineering  Mechanics and Computation

Download or read book Insights and Innovations in Structural Engineering Mechanics and Computation written by Alphose Zingoni and published by CRC Press. This book was released on 2016-11-25 with total page 3395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.

Book The Journal of the Acoustical Society of America

Download or read book The Journal of the Acoustical Society of America written by and published by . This book was released on 2009 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by J.F. Allard and published by Springer. This book was released on 2012-01-07 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Book Parameters of Acoustic Propagation Through Porous Media

Download or read book Parameters of Acoustic Propagation Through Porous Media written by Timothy James Eggerding and published by . This book was released on 2007 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Acoustic Propagation in Fractal Porous Media

Download or read book Acoustic Propagation in Fractal Porous Media written by David William Craig and published by . This book was released on 1995 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Poromechanics III   Biot Centennial  1905 2005

Download or read book Poromechanics III Biot Centennial 1905 2005 written by Younane N. Abousleiman and published by CRC Press. This book was released on 2005-05-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings represent the latest advances in the mechanics of porous materials, known as poromechanics. The porous materials considered are solids containing voids that are impregnated with fluid. The focus is on the mechanical interactions of the inhomogeneous solid with the single- or multi-phase fluid under the loading of mechanical force, fluid pressure, thermal, chemical, and magnetic fields. The response time can be in static, diffusional, and dynamic ranges. The length scale can start from nano, to micro, macro, and up to field scales. Its application covers many branches of science and engineering, including geophysics, geomechanics, composite materials, biomechanics, acoustics, seismicity, civil, mechanical, environmental, and petroleum engineering. The approaches taken include analytical, computational, and experimental. To honor the pioneering contributions of Maurice A. Biot (1905-1985) to poromechanics, the Biot Conference on Poromechanics was convened for the first time in Louvain-la-Neuve, Belgium in 1998. The success of the first conference led to the 2nd Biot Conference held in Grenoble, France in 2002. To celebrate the centennial birthday of Biot (May 25, 2005), the 3rd Biot Conference on Poromechanics was held at the University of Oklahoma, Norman, Oklahoma, U.S.A., on May 24-27, 2005.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2005 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multi Component Acoustic Characterization of Porous Media

Download or read book Multi Component Acoustic Characterization of Porous Media written by Karel N. van Dalen and published by Springer. This book was released on 2015-06-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The feasibility to extract porous medium parameters from acoustic recordings is investigated. The thesis gives an excellent discussion of our basic understanding of different wave modes, using a full-waveform and multi-component approach. Focus lies on the dependency on porosity and permeability where especially the latter is difficult to estimate. In this thesis, this sensitivity is shown for interface-wave and reflected-wave modes. For each of the pseudo-Rayleigh and pseudo-Stoneley interface waves unique estimates for permeability and porosity can be obtained when impedance and attenuation are combined. The pseudo-Stoneley wave is most sensitive to permeability: both the impedance and the attenuation are controlled by the fluid flow. Also from reflected-wave modes unique estimates for permeability and porosity can be obtained when the reflection coefficients of different reflected modes are combined. In this case the sensitivity to permeability is caused by subsurface heterogeneities generating mesoscopic fluid flow at seismic frequencies. The results of this thesis suggest that estimation of in-situ permeability is feasible, provided detection is carried out with multi-component measurements. The results of this thesis argely affect geotechnical and reservoir engineering practices.

Book Petroleum Abstracts

Download or read book Petroleum Abstracts written by and published by . This book was released on 1992 with total page 1716 pages. Available in PDF, EPUB and Kindle. Book excerpt: