EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Micromechanics Modelling of Ductile Fracture

Download or read book Micromechanics Modelling of Ductile Fracture written by Zengtao Chen and published by Springer Science & Business Media. This book was released on 2013-04-02 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes research advances in micromechanics modeling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way, first presenting a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage developments within a single-measure microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

Book Ductile Fracture in Metal Forming

Download or read book Ductile Fracture in Metal Forming written by Kazutake Komori and published by Academic Press. This book was released on 2019-10-11 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. Explains innovative micromechanical modeling techniques for a variety of material behaviors Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging Provides a thorough examination of both macroscopic and microscopic ductile fracture theory

Book Fracture Mechanics

Download or read book Fracture Mechanics written by Fazil Erdogan and published by ASTM International. This book was released on 1995 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fracture Mechanics

    Book Details:
  • Author : Dietmar Gross
  • Publisher : Springer
  • Release : 2017-11-28
  • ISBN : 3319710907
  • Pages : 366 pages

Download or read book Fracture Mechanics written by Dietmar Gross and published by Springer. This book was released on 2017-11-28 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: - self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results

Book Recent Trends in Fracture and Damage Mechanics

Download or read book Recent Trends in Fracture and Damage Mechanics written by Geralf Hütter and published by Springer. This book was released on 2015-09-01 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors. The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.

Book Micromechanics of Fracture and Damage

Download or read book Micromechanics of Fracture and Damage written by Luc Dormieux and published by John Wiley & Sons. This book was released on 2016-03-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the mechanics and physics of fractures at various scales. Based on advanced continuum mechanics of heterogeneous media, it develops a rigorous mathematical framework for single macrocrack problems as well as for the effective properties of microcracked materials. In both cases, two geometrical models of cracks are examined and discussed: the idealized representation of the crack as two parallel faces (the Griffith crack model), and the representation of a crack as a flat elliptic or ellipsoidal cavity (the Eshelby inhomogeneity problem). The book is composed of two parts: The first part deals with solutions to 2D and 3D problems involving a single crack in linear elasticity. Elementary solutions of cracks problems in the different modes are fully worked. Various mathematical techniques are presented, including Neuber-Papkovitch displacement potentials, complex analysis with conformal mapping and Eshelby-based solutions. The second part is devoted to continuum micromechanics approaches of microcracked materials in relation to methods and results presented in the first part. Various estimates and bounds of the effective elastic properties are presented. They are considered for the formulation and application of continuum micromechanics-based damage models.

Book IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials

Download or read book IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials written by André Pineau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IUT AM Symposium on "Micromechanics of Plasticity and Damage of Multiphase Materials" was held in Sevres, Paris, France, 29 August - 1 September 1995. The Symposium was attended by 83 persons from 18 countries. In addition 17 young French students attended the meeting. During the 4 day meeting, a total of 55 papers were presented, including 24 papers in the poster sessions. The meeting was divided into 7 oral and 3 poster sessions. The 7 oral sessions were the following: - Plasticity and Viscoplasticity I and II; - Phase transformations; - Damage I and II; - Statistical and geometrical aspects; - Cracks and interfaces. Each poster session was introduced by a Rapporteur, as follows: - Session I (Plasticity and Viscoplasticity): G. Cailletaud; - Session 2 (Damage): D. Franc;:ois; - Session 3 (Phase transformation; statistical and geometrical aspects): D. Jeulin. The main purpose of the Symposium was the discussion of the state of the art in the development of micromechanical models used to predict the macroscopic mechanical behaviour of mUltiphase solid materials. These materials consist of at least two chemically different phases, present either initially or formed during plastic deformation, when a strain-induced phase transformation takes place. One session was devoted to the latter case. Continuously strengthened composite materials, containing long fibers, were out of the scope of the Symposium.

Book Fracture Mechanics

Download or read book Fracture Mechanics written by Walter G. Reuter and published by ASTM International. This book was released on 1995 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Micromechanics and Nanosimulation of Metals and Composites

Download or read book Micromechanics and Nanosimulation of Metals and Composites written by Siegfried Schmauder and published by Springer Science & Business Media. This book was released on 2008-10-20 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The strength of metallic materials determines the usability and reliability of all the machines, tools and equipment around us. Yet, the question about which mechanisms control the strength and damage resistance of materials and how they can be optimised remains largely unanswered. How do real, heterogeneous ma- rials deform and fail? Why can a small modification of the microstructure increase the strength and damage resistance of materials manifold? How can the strength of heterogeneous materials be predicted? The purpose of this book is to present different experimental and computational analysis methods of micromechanics of damage and strength of materials and to demonstrate their applications to various micromechanical problems. This book summarizes at a glance some of the publications of the Computational Mechanics Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and meso- chanical modelling and experimental analysis of strength and damage of metallic materials. In chapter 1, the micromechanisms of damage and fracture in different groups of materials are investigated experimentally, using direct observations and inverse analysis. The interaction of microstructural elements with the evolving damage is studied in these experiments. Chapter 2 presents different approaches to the - cromechanical simulation of composite materials: embedded unit cells, multiphase finite elements and multiparticle unit cells. Examples of the application of these models to the analysis of deformation and damage in different materials are given. Chapter 3 deals with the methods of numerical modelling of damage evolution and crack growth in heterogeneous materials.

Book Micromechanical Analysis and Multi Scale Modeling Using the Voronoi Cell Finite Element Method

Download or read book Micromechanical Analysis and Multi Scale Modeling Using the Voronoi Cell Finite Element Method written by Somnath Ghosh and published by CRC Press. This book was released on 2011-06-23 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: As multi-phase metal/alloy systems and polymer, ceramic, or metal matrix composite materials are increasingly being used in industry, the science and technology for these heterogeneous materials has advanced rapidly. By extending analytical and numerical models, engineers can analyze failure characteristics of the materials before they are integrat

Book Sheet Metal Meso  and Microforming and Their Industrial Applications

Download or read book Sheet Metal Meso and Microforming and Their Industrial Applications written by Xin Min Lai and published by CRC Press. This book was released on 2018-08-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a compilation of research on meso/microforming processes, and offers systematic and holistic knowledge for the physical realization of developed processes. It discusses practical applications in fabrication of meso/microscale metallic sheet-metal parts via sheet-metal meso/microforming. In addition, the book provides extensive and informative illustrations, tables, case studies, photos and figures to convey knowledge of sheet-metal meso/microforming for fabrication of meso/microscale sheet-metal products in an illustrated manner. Key Features • Presents complete analysis and discussion of micro sheet metal forming processes • Guides reader across the mechanics, failures, prediction of failures and tooling and prospective applications • Discusses definitions of multi-scaled metal forming, sheet-metal meso/microforming and the challenges in such domains • Includes meso/micro-scaled sheet-metal parts design from a micro-manufacturability perspective, process determination, tooling design, product quality analysis, insurance and control • Covers industrial application and examples

Book Modeling of the Damage Mechanisms in AlMgSi Alloys

Download or read book Modeling of the Damage Mechanisms in AlMgSi Alloys written by Denis Lassance and published by Presses univ. de Louvain. This book was released on 2006 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the growth in importance of the aluminium industry, has come increased demand to invest into the quality improvement of the different aluminium based hot extruded products. One of the main mechanisms, which can influence deformation at high temperature within the 6xxx aluminium, is linked to the presence of the AlFeSi intermetallic phases. These phases severely restrict hot workability when present as hard and brittle plate-like precipitates b-AlFeSi. Damage initiation occurs in these alloys by decohesion or fracture of these intermetallic inclusions. The understanding and modeling of the deformation and fracture behavior of aluminium alloys at room and at hot working temperature is very important for optimizing manufacturing processes such as extrusion. The ductility of 6xxx aluminium alloys can be directly related to chemical composition and to the microstructural evolution occurring during the heat treatment procedures preceding extrusion if proper physics based deformation and fracture models are used. In this thesis, room temperature and hot tensile tests are adopted to address the problem xperimentally. The damage evolution mechanisms is defined at various temperatures and a micromechanics based model of the Gurson type considering several populations of cavities nucleated by different second phase particles groups is developed on the basis of the experimental observations. This model allows relating quantitatively microstructure and ductility at various temperatures strain rates and stress triaxialities. Finite element simulations based on an enhanced micromechanics-based model are used to validate the model. Finally, the effect of some key factors that determine the extrudability of aluminium is also discussed and a correlation between the ductility calculations in uniaxial tension and the maximum extrusion speed is developed for one defined profile.

Book Modeling of Defects and Fracture Mechanics

Download or read book Modeling of Defects and Fracture Mechanics written by G. Herrmann and published by Springer. This book was released on 2014-05-04 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: All materials contain numerous defects, such as microcracks, microvoids, inhomogeneities, dislocations, etc., which precede possible fracture. Thus mathematical modeling becomes necessary. This volume contains some introductory material, aspects of fracture mechanics, the theory of crystal defects, computational micromechanics, and the heterogenization methodology.

Book Introduction to Fracture Mechanics

Download or read book Introduction to Fracture Mechanics written by Robert O. Ritchie and published by Elsevier. This book was released on 2021-05-27 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)

Book The Theory of Critical Distances

Download or read book The Theory of Critical Distances written by David Taylor and published by Elsevier. This book was released on 2010-07-07 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Critical distance methods are extremely useful for predicting fracture and fatigue in engineering components. They also represent an important development in the theory of fracture mechanics. Despite being in use for over fifty years in some fields, there has never been a book about these methods – until now. So why now? Because the increasing use of computer-aided stress analysis (by FEA and other techniques) has made these methods extremely easy to use in practical situations. This is turn has prompted researchers to re-examine the underlying theory with renewed interest. The Theory of Critical Distances begins with a general introduction to the phenomena of mechanical failure in materials: a basic understanding of solid mechanics and materials engineering is assumed, though appropriate introductory references are provided where necessary. After a simple explanation of how to use critical distance methods, and a more detailed exposition of the methods including their history and classification, the book continues by showing examples of how critical distance approaches can be applied to predict fracture and fatigue in different classes of materials. Subsequent chapters include some more complex theoretical areas, such as multiaxial loading and contact problems, and a range of practical examples using case studies of real engineering components taken from the author’s own consultancy work. The Theory of Critical Distances will be of interest to a range of readers, from academic researchers concerned with the theoretical basis of the subject, to industrial engineers who wish to incorporate the method into modern computer-aided design and analysis. Comprehensive collection of published data, plus new data from the author's own laboratories A simple 'how-to-do-it' exposition of the method, plus examples and case studies Detailed theoretical treatment Covers all classes of materials: metals, polymers, ceramics and composites Includes fracture, fatigue, fretting, size effects and multiaxial loading

Book Ultra low Cycle Fatigue Failure of Metal Structures under Strong Earthquakes

Download or read book Ultra low Cycle Fatigue Failure of Metal Structures under Strong Earthquakes written by Liang-Jiu Jia and published by Springer. This book was released on 2018-11-02 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents experimental results and theoretical advances in the field of ultra-low-cycle fatigue failure of metal structures under strong earthquakes, where the dominant failure mechanism is ductile fracture. Studies on ultra-low-cycle fatigue failure of metal materials and structures have caught the interest of engineers and researchers from various disciplines, such as material, civil and mechanical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while also highlighting the importance of theoretical analysis and experimental results in the fracture evaluation of metal structures under seismic loading. Accordingly, it offers a valuable resource for undergraduate and graduate students interested in ultra-low-cycle fatigue, researchers investigating steel and aluminum structures, and structural engineers working on applications related to cyclic large plastic loading conditions.

Book Micromechanisms of Fracture and Fatigue

Download or read book Micromechanisms of Fracture and Fatigue written by Jaroslav Pokluda and published by Springer Science & Business Media. This book was released on 2010-05-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.