EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microcrack Characterization and the Fracture Mechanism of Damaged Rock

Download or read book Microcrack Characterization and the Fracture Mechanism of Damaged Rock written by Chee-Nan Chen and published by . This book was released on 1992 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Combined Finite Discrete Element Method

Download or read book The Combined Finite Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.

Book Fracture Mechanics of Rock

Download or read book Fracture Mechanics of Rock written by Barry Kean Atkinson and published by Elsevier. This book was released on 2015-05-11 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of crack problems through fracture mechanics has been applied to the study of materials such as glass, metals and ceramics because relatively simple fracture criteria describe the failure of these materials. The increased attention paid to experimental rock fracture mechanics has led to major contributions to the solving of geophysical problems.The text presents a concise treatment of the physics and mathematics of a representative selection of problems from areas such as earthquake mechanics and prediction, hydraulic fracturing, hot dry rock geothermal energy, fault mechanics, and dynamic fragmentation.

Book Characterization of Brittle Damage in Rock from the Micro to Macro Scale

Download or read book Characterization of Brittle Damage in Rock from the Micro to Macro Scale written by Pooya Hamdi and published by . This book was released on 2015 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Increasing need for mining and constructing underground facilities at a greater depth and under high in-situ stresses have introduced new challenges in the form of brittle rock fracture. Brittle fracture is a complex mechanism comprising different stages of failure including initiation, propagation and coalescence. Brittle fracture studies in rock can be undertaken at a wide range of scales from the micro scale i.e. microcrack/grain scale in laboratory samples through the meso scale (underground excavations) to the macro scale such as in-situ engineered/natural rock slopes or block cave mines. At all these scales the rock/rock mass is subjected to "damage" which influences the engineering performance. Improved understanding of brittle damage at various scales requires development of damage intensity measures to quantify brittle fracture for both pre-existing and stress-induced fractures and the use of advanced numerical modelling approach. In this study, a state-of-the-art numerical modelling approach based on the combined finite/discrete element method (FDEM) is integrated with discrete fracture network engineering, DFNE, in order to evaluate brittle damage at varied scales. The influence of micro-heterogeneity is studied at the laboratory scale by incorporating a micro discrete fracture network (μDFN). A wide range of laboratory testing including Brazilian, uniaxial, biaxial and triaxial compression tests are modeled to investigated the complete 3D fracture process. At the meso scale, mechanisms leading to strain bursting and spalling damage around underground openings are studied focusing on the influence of pre-existing cracks in a massive rock mass. Finally at the macro scale, a finite/discrete element modelling approach coupled with a discrete fracture network (FDEM-DFN) is utilized to analyze the hanging wall surface subsidence associated with sub-level caving. A suite of model data interpretation methods including time-displacement hanging wall deformation characterization, numerical inverse velocity analysis and virtual hanging wall inclinometers is adopted to improve our understanding of the extent and mechanism of hanging wall failure with mine advance.

Book Rock Fracture Mechanics

Download or read book Rock Fracture Mechanics written by H.P. Rossmanith and published by Springer. This book was released on 2014-05-04 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Damage Zones Associated with Laboratory Produced Natural Hydraulic Fractures

Download or read book Characterization of Damage Zones Associated with Laboratory Produced Natural Hydraulic Fractures written by Erin Elizabeth Bradley and published by . This book was released on 2012 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both joint sets and fault-related fractures serve as important conduits for fluid flow. In the former case, they can strongly influence both permeability and permeability anisotropy, with implications for production of water, hydrocarbons and contaminant transport. The latter can affect issues of fluid flow, such as whether a given fault seals or leaks, and fault mechanics. These fractures are commonly interpreted as Natural Hydraulic Fractures (NHFs), i.e., mode 1 fractures produced when pore fluid pressure exceeds the tensile strength of the rock. Various mathematical models have been a rich source of hypotheses to explain the formation and propagation of NHFs, but have provided only limited information and nothing about processes of fracture initiation in originally intact rock. Recent laboratory experiments of French et al. (2012) have advanced our understanding of mechanical controls on fracture initiation and spacing. Here, detailed analysis of both through-going fracture surfaces, non-through-going fractures, in experimentally deformed samples provide a deeper understanding of NHF processes and resulting geometric features in porous siliciclastic sedimentary rocks. Observations indicate that both fracture planarity and microcrack damage (which has not previously been reported for opening mode fractures) vary significantly depending on the degree of mechanical heterogeneity and anisotropy of the host rock. Variations reflect mechanical controls on fracture initiation and propagation, suggesting that fracture spacing may in part reflect the distribution of mechanical heterogeneities. These data indicate that the more homogeneous the rock, the greater the microcrack damage surrounding a given NHF, increasing expected fracture-associated permeability for a given fracture aperture.

Book Physical and Mechanical Properties of Rocks

Download or read book Physical and Mechanical Properties of Rocks written by Institut geologii rudnykh mestorozhdeniĭ, petrografii, mineralogii i geokhimii (Akademii︠a︡ nauk SSSR) and published by . This book was released on 1967 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-08-27
  • ISBN : 0309049962
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Porous Rock Fracture Mechanics

Download or read book Porous Rock Fracture Mechanics written by Amir Shojaei and published by Woodhead Publishing. This book was released on 2017-05-05 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous Rock Failure Mechanics: Hydraulic Fracturing, Drilling and Structural Engineering focuses on the fracture mechanics of porous rocks and modern simulation techniques for progressive quasi-static and dynamic fractures. The topics covered in this volume include a wide range of academic and industrial applications, including petroleum, mining, and civil engineering. Chapters focus on advanced topics in the field of rock's fracture mechanics and address theoretical concepts, experimental characterization, numerical simulation techniques, and their applications as appropriate. Each chapter reflects the current state-of-the-art in terms of the modern use of fracture simulation in industrial and academic sectors. Some of the major contributions in this volume include, but are not limited to: anisotropic elasto-plastic deformation mechanisms in fluid saturated porous rocks, dynamics of fluids transport in fractured rocks and simulation techniques, fracture mechanics and simulation techniques in porous rocks, fluid-structure interaction in hydraulic driven fractures, advanced numerical techniques for simulation of progressive fracture, including multiscale modeling, and micromechanical approaches for porous rocks, and quasi-static versus dynamic fractures in porous rocks. This book will serve as an important resource for petroleum, geomechanics, drilling and structural engineers, R&D managers in industry and academia. - Includes a strong editorial team and quality experts as chapter authors - Presents topics identified for individual chapters are current, relevant, and interesting - Focuses on advanced topics, such as fluid coupled fractures, rock's continuum damage mechanics, and multiscale modeling - Provides a 'one-stop' advanced-level reference for a graduate course focusing on rock's mechanics

Book Micromechanics of Fracture and Damage

Download or read book Micromechanics of Fracture and Damage written by Luc Dormieux and published by John Wiley & Sons. This book was released on 2016-03-31 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the mechanics and physics of fractures at various scales. Based on advanced continuum mechanics of heterogeneous media, it develops a rigorous mathematical framework for single macrocrack problems as well as for the effective properties of microcracked materials. In both cases, two geometrical models of cracks are examined and discussed: the idealized representation of the crack as two parallel faces (the Griffith crack model), and the representation of a crack as a flat elliptic or ellipsoidal cavity (the Eshelby inhomogeneity problem). The book is composed of two parts: The first part deals with solutions to 2D and 3D problems involving a single crack in linear elasticity. Elementary solutions of cracks problems in the different modes are fully worked. Various mathematical techniques are presented, including Neuber-Papkovitch displacement potentials, complex analysis with conformal mapping and Eshelby-based solutions. The second part is devoted to continuum micromechanics approaches of microcracked materials in relation to methods and results presented in the first part. Various estimates and bounds of the effective elastic properties are presented. They are considered for the formulation and application of continuum micromechanics-based damage models.

Book Mechanism of Brittle Fracture of Rock

Download or read book Mechanism of Brittle Fracture of Rock written by Z. T. Bieniawski and published by . This book was released on 1967 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Emission Signatures of Microcrack Damage in Rock

Download or read book Acoustic Emission Signatures of Microcrack Damage in Rock written by M. V. M. S. Rao and published by LAP Lambert Academic Publishing. This book was released on 2012 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, controlled laboratory experiments of rock fracture & friction, and monitoring and analyses of accompanying acoustic emissions (AE), and application of fractals to investigate the failure zone development and its growth in rock under simulated field conditions have become possible. This development has contributed more to the fracture mechanics research of rock as well as for better planning and execution of field experiments aimed at structural health monitoring, and forewarning and control of rock bursts in deep mines etc. Furthermore, the utilization of simpler and PC-based AE monitoring systems can yield fruitful results to detect, track, analyze and quantify the various stages of microcrack damage in rock as detailed in this monograph. Among various parameters, the occurrence rate of AE events and energy, b-values, cumulative energy counts and energy per event have been found to be more helpful to make a detailed study and quantify the stress-induced microcrack damage in rock. This monograph will be useful for active researchers, academicians, NDT professionals and graduate students of geological sciences and related engineering fields.

Book Geologic Fracture Mechanics

Download or read book Geologic Fracture Mechanics written by Richard A. Schultz and published by Cambridge University Press. This book was released on 2019-08-08 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to geologic fracture mechanics covering geologic structural discontinuities from theoretical and field-based perspectives.

Book Rock Failure Mechanisms

Download or read book Rock Failure Mechanisms written by Chun'An Tang and published by CRC Press. This book was released on 2010-08-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: When dealing with rock in civil engineering, mining engineering and other engineering, the process by which the rock fails under load should be understood, so that safe structures can be built on and in the rock. However, there are many ways for loading rock and rock can have a variety of idiosyncracies. This reference book provides engineers and researchers with the essential knowledge for a clear understanding of the process of rock failure under different conditions. It contains an introductory chapter explaining the role of rock failure in engineering projects plus a summary of the theories governing rock failure and an explanation of the computer simulation method. It subsquently deals in detail with explaining, simulating and illustrating rock failure in laboratory and field. The concluding chapter discusses coupled modelling and the anticipated future directions for this type of computer simulation. An appendix describing the RFPA numerical model (Rock Failure Process Analysis program) is also included. About the Authors Chun'an Tang has a PhD in Mining Engineering and is a Professor at the School of Civil & Hydraulic Engineering at Dalian University of Technology in China. He is an advisor for design and stablity problem modelling in mining and civil rock engineeringand and Chairman of the China National Group of the International Society for Rock Mechanics. John Hudson is emeritus professor at Imperial College, London and is active as an independant consultant for Rock Engineering Consultants. He has a PhD in Rock Mechanics and completed over a 130 rock engineering consulting assignments in mining and civil engineering. He is a fellow at the Royal Academy of Engineering in the UK and President of the International Society for Rock Mechanics.

Book Microcracking in Rock as Acoustic Emission

Download or read book Microcracking in Rock as Acoustic Emission written by Tsuyoshi Ishida and published by CRC Press. This book was released on 2015-06-01 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rock stress and rock damaging are some of the main obstacles encountered when designing and constructing engineering projects with rock. This book will provide a basis to interpret acoustic emission (AE) as damage processes in stressed rock, with applications to stress measurements, size effects, source mechanisms, and fracture mechanics. The nature of rock will be described as a crystalline solid with voids in the form of small cracks and pores called damage, and AE will be explained as energy released as a result of increase in damage. Basic features of an AE monitoring system will be covered, with some background on the sensor, pre-amplifier, and data acquisition. Waveform analyses will include source locations through a geometric interpretation and a numerical algorithm, which will be available through the authors’ web sites. Fault plane solutions and moment tensor analysis will be presented for a quantitative evaluation of micromechanisms of rock failure under tension and shear. Several examples of AE monitoring will include both lab and field applications ranging from element testing to hydraulic fracturing. Intended for geologists, geophysicists and mining, petroleum and civil engineers dealing with rock stress and rock damage processes.

Book Quasibrittle Fracture Mechanics and Size Effect

Download or read book Quasibrittle Fracture Mechanics and Size Effect written by Jia-Liang Le and published by Oxford University Press. This book was released on 2021-11-19 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many modern engineering structures are composed of brittle heterogenous, or quasibrittle, materials. These include concrete, composites, tough ceramics, rocks, cold asphalt mixtures, and many brittle materials at the microscale. Understanding the failure behavior of these materials is of paramount importance for improving the resilience and sustainability of various engineering structures including civil infrastructure, aircraft, ships, military armors, and microelectronic devices. Designed for graduate and upper-level undergraduate university courses, this textbook provides a comprehensive treatment of quasibrittle fracture mechanics. It includes a concise but rigorous examination of linear elastic fracture mechanics, which is the foundation of all fracture mechanics. It also covers the fundamental concepts of nonlinear fracture mechanics, and introduces more advanced concepts such as triaxial stress state in the fracture process zone, nonlocal continuum models, and discrete computational models. Finally, the book features extensive discussion of the various practical applications of quasibrittle fracture mechanics across different structures and engineering disciplines, and throughout includes exercises and problems for students to test their understanding.

Book Fractals in Rock Mechanics

Download or read book Fractals in Rock Mechanics written by Heping Xie and published by CRC Press. This book was released on 2020-12-18 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Important developments in the progress of the theory of rock mechanics during recent years are based on fractals and damage mechanics. The concept of fractals has proved to be a useful way of describing the statistics of naturally occurring geometrics. Natural objects, from mountains and coastlines to clouds and forests, are found to have boundaries best described as fractals. Fluid flow through jointed rock masses and clusterings of earthquakes are found to follow fractal patterns in time and space. Fracturing in rocks at all scales, from the microscale (microcracks) to the continental scale (megafaults), can lead to fractal structures. The process of diagenesis and pore geometry of sedimentary rock can be quantitatively described by fractals, etc. The book is mainly concerned with these developments, as related to fractal descriptions of fragmentations, damage and fracture of rocks, rock burst, joint roughness, rock porosity and permeability, rock grain growth, rock and soil particles, shear slips, fluid flow through jointed rocks, faults, earthquake clustering, and so on. The prime concerns of the book are to give a simple account of the basic concepts, methods of fractal geometry, and their applications to rock mechanics, geology, and seismology, and also to discuss damage mechanics of rocks and its application to mining engineering. The book can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.