Download or read book Metric Foliations and Curvature written by Detlef Gromoll and published by Springer Science & Business Media. This book was released on 2009-03-28 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemannian manifolds, particularly those with positive or nonnegative curvature, are constructed from only a handful by means of metric fibrations or deformations thereof. This text documents some of these constructions, many of which have only appeared in journal form. The emphasis is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.
Download or read book Extrinsic Geometry of Foliations written by Vladimir Rovenski and published by Springer Nature. This book was released on 2021-05-22 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.
Download or read book Metric Foliations and Curvature written by Detlef Gromoll and published by Birkhäuser. This book was released on 2009-08-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Riemannian manifolds, particularly those with positive or nonnegative curvature, are constructed from only a handful by means of metric fibrations or deformations thereof. This text documents some of these constructions, many of which have only appeared in journal form. The emphasis is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.
Download or read book Riemannian Foliations written by Molino and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.
Download or read book Geometric Analysis written by Jingyi Chen and published by Springer Nature. This book was released on 2020-04-10 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
Download or read book Foliations and the Geometry of 3 Manifolds written by Danny Calegari and published by Oxford University Press on Demand. This book was released on 2007-05-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Download or read book Foliations on Riemannian Manifolds and Submanifolds written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.
Download or read book Foliations 2012 Proceedings Of The International Conference written by Jesus A Alvarez Lopez and published by World Scientific. This book was released on 2013-10-25 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a compilation of new results and surveys on the current state of some aspects of the foliation theory presented during the conference “FOLIATIONS 2012”. It contains recent materials on foliation theory which is related to differential geometry, the theory of dynamical systems and differential topology. Both the original research and survey articles found in here should inspire students and researchers interested in foliation theory and the related fields to plan his/her further research.
Download or read book Foliations 2005 written by Pawel Grzegorz Walczak and published by World Scientific. This book was released on 2006 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume takes a look at the current state of the theory of foliations, with surveys and research articles concerning different aspects. The focused aspects cover geometry of foliated Riemannian manifolds, Riemannian foliations and dynamical properties of foliations and some aspects of classical dynamics related to the field. Among the articles readers may find a study of foliations which admit a transverse contractive flow, an extensive survey on non-commutative geometry of Riemannian foliations, an article on contact structures converging to foliations, as well as a few articles on conformal geometry of foliations. This volume also contains a list of open problems in foliation theory which were collected from the participants of the Foliations 2005 conference. Sample Chapter(s). Chapter 1: Morphisms of Pseudogroups and foliated Maps (808 KB). Contents: Morphisms of Pseudogroups and Foliated Maps (J ulvarez Lpez & X Masa); On Infinitesimal Derivatives of the Bott Class (T Asuke); Hirsch Foliations in Codimension Greater Than One (A Bis, S Hurder & J Shive); Extrinsic Geometry of Foliations on 3-Manifolds (D Bolotov); Extrinsic Geometry of Foliations (M Czarnecki & P Walczak); Transversal Twistor Spinors on a Riemannian Foliation (S D Jung); A Survey on Simplicial Volume and Invariants of Foliations and Laminations (T Kuessner); Harmonic Foliations of the Plane, a Conformal Approach (R Langevin); Consecutive Shifts Along Orbits of Vector Fields (S Maksymenko); Generalized Equivariant Index Theory (K Richardson); Vanishing Results for Spectral Terms of a Riemannian Foliation (V Slesar); On the Group of Foliation Preserving Diffeomorphisms (T Tsuboi); and other papers. Readership: Researchers and graduate students in such areas of mathematics as foliations, dynamical systems (Anosov and Morse-Smale, in particular), Riemannian and conformal geometry; and in other fields such as mathematical physics, non-commutative geometry and analysis on manifolds."
Download or read book Differential Topology Foliations and Group Actions written by Paul A. Schweitzer and published by American Mathematical Soc.. This book was released on 1994 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Topology held at the Pontificia Universidade Catolica in Rio de Janeiro in January 1992. Bringing together about one hundred mathematicians from Brazil and around the world, the workshop covered a variety of topics in differential and algebraic topology, including group actions, foliations, low-dimensional topology, and connections to differential geometry. The main concentration was on foliation theory, but there was a lively exchange on other current topics in topology. The volume contains an excellent list of open problems in foliation research, prepared with the participation of some of the top world experts in this area. Also presented here are two surveys on group actions---finite group actions and rigidity theory for Anosov actions---as well as an elementary survey of Thurston's geometric topology in dimensions 2 and 3 that would be accessible to advanced undergraduates and graduate students.
Download or read book Foliations written by Alberto Candel and published by American Mathematical Soc.. This book was released on 2000 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Foliations 2005 Proceedings Of The International Conference written by Pawel Walczak and published by World Scientific. This book was released on 2006-09-20 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume takes a look at the current state of the theory of foliations, with surveys and research articles concerning different aspects. The focused aspects cover geometry of foliated Riemannian manifolds, Riemannian foliations and dynamical properties of foliations and some aspects of classical dynamics related to the field. Among the articles readers may find a study of foliations which admit a transverse contractive flow, an extensive survey on non-commutative geometry of Riemannian foliations, an article on contact structures converging to foliations, as well as a few articles on conformal geometry of foliations. This volume also contains a list of open problems in foliation theory which were collected from the participants of the Foliations 2005 conference.
Download or read book Geometry of Foliations written by Philippe Tondeur and published by Birkhäuser. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics in this survey volume concern research done on the differential geom etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa ration for the statement of Molino's Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes' point of view of foliations as examples of non commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of foliations. Appendix B is a list of proceedings of conferences and symposia devoted partially or entirely to foliations. Appendix C is a bibliography on foliations, which attempts to be a reasonably complete list of papers and preprints on the subject of foliations up to 1995, and contains approximately 2500 titles.
Download or read book Foliations and Geometric Structures written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.
Download or read book An Introduction to Extremal Kahler Metrics written by Gábor Székelyhidi and published by American Mathematical Soc.. This book was released on 2014-06-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Download or read book Topics in Extrinsic Geometry of Codimension One Foliations written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2011-07-26 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.
Download or read book Geometry and its Applications written by Vladimir Rovenski and published by Springer. This book was released on 2014-05-05 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as MapleTM and Mathematica® , as well as presentation of new results.