EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metals and Metal Based Electrocatalytic Materials for Alternative Energy Sources and Electronics

Download or read book Metals and Metal Based Electrocatalytic Materials for Alternative Energy Sources and Electronics written by Jasmina Stevanovic and published by Nova Science Publishers. This book was released on 2019 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: The important role of metals, their oxides and catalytically-interactive supports in contemporary investigations related to rational construction of next-generation devices as alternative energy sources and hi-tech electronics is ambitiously presented throughout this book. The topics involve: Carbonaceous and non-typical platinum-based nanostructured electrode materials as promising candidates for anodic reactions in low-temperature fuel cells. Ruthenium oxide as electroactive material, presented through its innovative synthesis routes involving microwave heating and ultrasonic spray pyrolysis, with the focus on its performances as an electrochemical supercapacitor, but also as a part of multicomponent electrode coating in electrocatalysis of chlorine and oxygen evolution. Alkaline water electrolysis as the simplest method for hydrogen production especially when using renewable energy sources, offering the advantage of simplicity and environmentally clean technology with zero emission of greenhouse gases. New frontiers in electroconductive composite materials and biopolymers combined with noble metal nanoparticles that can be used in nanoelectronics and medical nanotechnologies. The possibilities for the operational improvement of an aluminum-air battery presented through alternative modifications of an Al-anode by alloying with magnesium and electromagnetic bulk structure homogenization. The improvements of copper-based materials as well as the research toward sustainable production of copper itself as an important component for further development of electronic devices.

Book Electrocatalytic Materials

Download or read book Electrocatalytic Materials written by Santanu Patra and published by Springer. This book was released on 2025-01-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on electrocatalytic materials, a field that has experienced significant advancements in recent decades, primarily driven by nanoscale catalyst design improvements. These advancements have been crucial in the development and enhancement of alternative energy technologies relying on electrochemical reactions. Electrocatalytic materials play a vital role in reducing over-potentials required for electrochemical device operation. As a prominent subset of catalysts, they facilitate essential reactions for energy conversion and storage through electron transfer processes. However, studying electrocatalytic materials presents challenges due to complex reaction networks, diverse selectivity possibilities, and intricate reaction mechanisms. This book offers an extensive description of electrocatalysis and the materials used in electrocatalytic processes. It covers cutting-edge studies and in-depth discussions on the applications of electrocatalytic materials in energy conversion and storage (including fuel cells, water splitting, batteries, etc.), sensors, and other potential applications. It also addresses the broader implications of electrocatalysis in academia and industry. Each section of the book highlights the latest developments, contemporary challenges, and state-of-the-art investigations aimed at producing valuable outcomes for end users. With contributions from diverse experts, this comprehensive resource is essential for researchers, scientists, industrialists, educators, and students.

Book Designing Three Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis

Download or read book Designing Three Dimensional Nanoporous Metal Alloys for Selective Electrochemical Conversion Catalysis written by Swarnendu Chatterjee and published by . This book was released on 2020 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rising demands of clean energy owing to a burgeoning global population and deteriorating climate has given rise to new avenues of research in electrocatalysis focusing on extraction and storage of energy through electrochemical reactions. In contrast to heterogeneous catalysts, electrochemical catalysts often need to withstand harsh reaction environments with respect to electrolyte pH and applied overpotentials. The stability requirements constrain the breadth of applicable materials, limiting the viable catalysts to those composed of more noble metals, which are invariably more costly. The design of next generation electrocatalyst materials requires strategies to balance activity and stability while at the same time minimizing the utilization of expensive materials to limit costs. Open-framework nanocatalyst architectures show promise as they maximize surface area to volume ratios and their morphology and surface chemistry are readily tuned through controlled processing methodologies. Among the high aspect ratio, open-framework nanostructures, nanoporous metals obtained through dealloying offer a unique class of three dimensional electrode materials that are useful for a number of electrolytic processes owing to their conductive high surface area structure and tunable near surface composition. Herein, we study the porosity evolution processes in multimetallic alloys through classical dealloying and alternative methods, in pursuit of creating optimal bicontinuous nanoporous architectures for two important electrochemical reactions, central to the carbon and water cycles: CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). To address the limitations of electrochemical dealloying for nanoporous metal synthesis, we first develop a new alternative method where we thermally decompose readily available transition metal dichalcogenides to create bicontinuous three dimensional metallic nanostructures. We show that spinodal decomposition with a proper balance of removal of the chalcogen component and surface diffusion of metal is possible that gives rise to uniform porosity length scales below 100 nm. Our new method is applicable to a broader range of materials including the refractory metals which are difficult to obtain in nanoporous bicontinuous form through conventional dealloying techniques. For CO2RR, we demonstrate favorable tuning of the near surface composition of core shell nanoporous alloys to mitigate a common problem in CO2 electrolysis which is the poisoning of electrocatalytic surface during long term reaction. CO2RR shows great promise as a remediation strategy to convert and store anthropogenic CO2. To realize its practical integration in industries with high CO2 emissions, uninterrupted activity of electrocatalyst is important at reasonable reaction timescales. Among the materials capable of electrochemically converting CO2 to formate which is a high energy density product, Palladium is unique in that it has shown substantial faradaic efficiency at minimal overpotential. Limiting its implementation, however, is its gradual deactivation through CO poisoning during constant potential CO2RR. Here, we show synthesis of core-shell nanoporous multi-metallic Pd alloys that display suppressed CO deactivation during formate production based on suitable choice of alloying component. The improvement in deactivation tolerance has been attributed to a combination of electronic impacts of subsurface alloying components as well as the composition dependent hydricity of the Pd alloys. The Pd skinned nanoporous alloys have been obtained by electrochemical dealloying where the high surface area electrode structure provides high formate partial current densities with minimal CO poisoning while not altering the formate selectivity at low CO2RR overpotentials. Aqueous CO2RR system also requires a stable electrocatalyst at the anode for the OER which requires stricter stability constraints for the electrocatalysts. OER is also the performance limiting component in the water splitting reactions of PEM electrolyzers. The oxidative potential of OER is difficult for many active materials to survive. In addition to the sluggish kinetics of the anodic OER, low catalyst stability and electrode conductivity lead to process inefficiencies. Higher valent oxidation states of Ir have been identified as the only materials that demonstrate a reasonable balance of activity and durability for acidic OER. Attempts to make nanoporous Ir employing dealloying for high surface area electrodes are limited owing to its strong tendency to make immobile oxides that defy morphology evolution through dealloying. Here we design a dealloying protocol to create unique nanoporous Ir morphologies, including porous nanosheets that exhibit sufficient activity and durability while displaying higher lateral and through-plane conductivity when compared to standard IrO2 catalysts. The metallic core of the nanoporous metal ligaments and absence of any binder/support result in low electrode and charge transfer resistances; ultimately giving rise to lower overpotential and improved electrochemically active surface area (ECSA) normalized current densities compared to IrO2. This thesis outlines the analysis of design of nanoporous core shell bicontinuous alloys and porous nanosheets through top down techniques for wide combinations of metals including the refractory metals which are difficult to obtain through existing dealloying methods. Nanoporous metal based electrodes show promise for utilization in high throughput CO2RR systems and PEM water electrolyzers both of which are important parts of renewable energy technologies.

Book Advances in Synthesis of Metallic  Oxidic and Composite Powders

Download or read book Advances in Synthesis of Metallic Oxidic and Composite Powders written by Srecko Stopic and published by MDPI. This book was released on 2021-02-16 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching¸ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.

Book Fundamentals of Electrocatalyst Materials and Interfacial Characterization

Download or read book Fundamentals of Electrocatalyst Materials and Interfacial Characterization written by Nicolas Alonso-Vante and published by John Wiley & Sons. This book was released on 2019-02-28 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses some essential topics in the science of energy converting devices emphasizing recent aspects of nano-derived materials in the application for the protection of the environment, storage, and energy conversion. The aim, therefore, is to provide the basic background knowledge. The electron transfer process and structure of the electric double layer and the interaction of species with surfaces and the interaction, reinforced by DFT theory for the current and incoming generation of fuel cell scientists to study the interaction of the catalytic centers with their supports. The chief focus of the chapters is on materials based on precious and non-precious centers for the hydrogen electrode, the oxygen electrode, energy storage, and in remediation applications, where the common issue is the rate-determining step in multi-electron charge transfer processes in electrocatalysis. These approaches are used in a large extent in science and technology, so that each chapter demonstrates the connection of electrochemistry, in addition to chemistry, with different areas, namely, surface science, biochemistry, chemical engineering, and chemical physics.

Book Multi functional Electrocatalysts

Download or read book Multi functional Electrocatalysts written by Viswanathan S Saji and published by Royal Society of Chemistry. This book was released on 2024-08-28 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-functional electrocatalysts are highly unique in that they display features that include the presence of multiple active sites that can simultaneously catalyse two or more different electrochemical reactions. They are particularly crucial for solving several pressing challenges and consequently are a priority in developing contemporary sustainable energy conversion and storage systems, such as fuel cells, metal–air batteries and electrolysers for green hydrogen production. This book will serve as a valuable reference for graduate students, researchers, and industrial practitioners working on electrochemical energy storage and conversion, electrocatalysis, materials chemistry and green hydrogen technologies.

Book Earth abundant Transition Metal Chalcogenide Electrocatalysts for Renewable Energy Applications

Download or read book Earth abundant Transition Metal Chalcogenide Electrocatalysts for Renewable Energy Applications written by and published by . This book was released on 2014 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy sustainability is perhaps the greatest ongoing challenge facing humanity. Our need to replace fossil fuel-based sources of energy with environmentally friendly, secure, and renewable alternatives continues to grow, and although this fact has been long realized by the scientific community and beyond, no present-day solution effectively competes with fossil fuels from an economic or performance standpoint. Although several renewable energy technologies, including photovoltaic solar cells and fuel cell systems, can efficiently supply usable power with little or no environmental impact, they often suffer from high costs due to the expensive raw materials and complex processing steps required to produce high performance devices. These costs ultimately limit the scalability of such technologies and, consequently, their potential to address our looming energy concerns. However, the viability of many renewable energy technologies---particularly those rooted in electrochemistry---could be substantially increased by replacing expensive and scarce materials (such as noble metals) with low-cost, earth-abundant alternatives that exhibit comparable performance. The work collected here primarily focuses on identifying and developing such alternative electrocatalysts, generally within the family of transition metal chalcogenides, and assessing their utility in electrochemical energy conversion applications. Chapter 1 reviews both electrochemical energy conversion and alternative earth-abundant electrocatalyst materials, motivating their investigation and outlining the key challenges yet to be overcome. In Chapter 2, metallic cobalt pyrite (cobalt disulfide, CoS2) is introduced as a new earth-abundant electrocatalyst candidate material capable of boosting the performance of quantum dot-sensitized solar cells while simultaneously eliminating their reliance on precious platinum-based electrodes. Chapter 3 further builds upon Chapter 2 by establishing the high intrinsic electrocatalytic activity of CoS2 toward the hydrogen evolution reaction. Here, micro- and nanostructuring strategies are also demonstrated to synergistically enhance the electrocatalytic performance and stability of CoS2. Chapter 4 broadens the family of pyrite-phase electrocatalysts by showing that other earth-abundant transition metal disulfides exhibit electrocatalytic activity toward both polysulfide reduction and the hydrogen evolution reaction. Collectively, this work represents substantial progress toward the development of earth-abundant transition metal chalcogenide electrocatalysts for renewable energy applications, with the expectation that the lessons learned here should translate to other materials systems.

Book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells  Electrolyzers  and Metal Air Batteries

Download or read book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells Electrolyzers and Metal Air Batteries written by Teko Napporn and published by Elsevier. This book was released on 2021-01-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Book Non precious Cathode Electrocatalytic Materials for Zinc air Battery

Download or read book Non precious Cathode Electrocatalytic Materials for Zinc air Battery written by Baejung Kim and published by . This book was released on 2013 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, rechargeable batteries attracted the attention from the researchers in search for renewable and sustainable energy sources. Up to date, lithium-ion battery is the most commercialized and has been supplying power to electronic devices and hybrid and electric vehicles. Lithium-ion battery, however, does not satisfy the expectations of ever-increasing energy and power density, which of their limits owes to its intercalation chemistry and the safety.1-2 Therefore, metal-air battery drew much attention as an alternative for its high energy density and a simple cell configuration.1 There are several different types of metal-air batteries that convey different viable reaction mechanisms depending on the anode metals; such as Li, Al, Ca, Cd, and Zn. Redox reactions take place in a metal-air cell regardless of the anode metal; oxidation reaction at the anode and reduction reaction at the air electrode. Between the two reaction, the oxygen reduction reaction (ORR) at the air electrode is the relatively the limiting factor within the overall cell reactions. The sluggish ORR kinetics greatly affects the performance of the battery system in terms of power output, efficiency, and durability. Therefore, researchers have put tremendous efforts in developing highly efficient metal air batteries and fuel cells, especially for high capacity applications such as electric vehicles. Currently, the catalyst with platinum nanoparticles supported on carbon material (Pt-C) is considered to exhibit the best ORR activities. Despite of the admirable electrocatalytic performance, Pt-C suffers from its lack of practicality in commercialization due to their prohibitively high cost and scarcity as of being a precious metal. Thus, there is increasing demand for replacing Pt with more abundant metals due economic feasibility and sustainability of this noble metal.3-5 Two different attitudes are taken for solution. The first approach is by optimizing the platinum loading in the formulation, or the alternatively the platinum can be replaced with non-precious materials. The purpose of this work is to discover and synthesize alternative catalysts for metal-air battery applications through optimized method without addition of precious metals. Different non-precious metals are investigated as the replacement of the precious metal including transition metal alloys, transition metal or mixed metal oxides, and chalcogenides. These types of metals, alone, still exhibits unsatisfying, yet worse, kinetics in comparison to the precious metals. Nitrogen-doped carbon material is a recently well studied carbon based material that exhibits great potential towards the cathodic reaction.6 Nitrogen-doped carbon materials are found to exhibit higher catalytic activity compared to the mentioned types of metals for its improved conductivity. Benefits of the carbon based materials are in its abundance and minimal environmental footprints. However, the degradation of these materials has demonstrated loss of catalytic activity through destruction of active sites containing the transition metal centre, ultimately causing infeasible stability. To compensate for these drawbacks and other limits of the nitrogen-doped carbon based catalysts, nitrogen-doped carbon nanotubes (NCNT) are also investigated in the series of study. The first investigation focuses on a development of a simple method to thermally synthesize a non-precious metal based nitrogen-doped graphene (NG) electrocatalyst using exfoliated graphene (Ex-G) and urea with varying amounts of iron (Fe) precursor. The morphology and structural features of the synthesized electrocatalyst (Fe-NG) were characterized by SEM and TEM, revealing the existence of graphitic nanoshells that potentially contribute to the ORR activity by providing a higher degree of edge plane exposure. The surface elemental composition of the catalyst was analyzed through XPS, which showed high content of a total N species (~8 at.%) indicative of the effective N-doping, present mostly in the form of pyridinic nitrogen groups. The oxygen reduction reaction (ORR) performance of the catalyst was evaluated by rotating disk electrode voltammetry in alkaline electrolyte and in a zinc-air battery cell. Fe-NG demonstrated high onset and half-wave potentials of -0.023 V (vs. SCE) and -0.110 V (vs. SCE), respectively. This excellent ORR activity is translated into practical zinc-air battery performance capabilities approaching that of commercial platinum based catalyst. Another approach was made in the carbon materials to further improve the cost of the electrode. Popular carbon allotropes, CNT and graphene, are combined as a composite (GC) and heteroatoms, nitrogen and sulfur, are introduced in order to improve the charge distribution of the graphitic network. Dopants were doped through two step processes; nitrogen dopant was introduced into the graphitic framework followed by the sulfur dopant. The coexistence of the two heteroatoms as dopants demonstrated outstanding ORR performance to those of reported as metal free catalysts. Furthermore, effects of temperature were investigated through comparing ORR performances of the catalysts synthesized in two different temperatures (500 ??? and 900 ???) during the N-doping process (consistent temperature was used for S-doping). Through XPS analysis of the surface chemistry of catalysts produced with high temperature during the N-doping step showed absence of N-species after the subsequent S-doping process (GC-NHS). Thus, the synergetic effects of the two heteroatoms were not revealed during the half-cell testing. Meanwhile, the two heteroatoms were verified in the catalyst synthesized though using low temperature during the N-doping process followed by the S-doping step (GC-NLS). Consequently, ORR activity of the resulting material demonstrated promising onset and half-wave potentials of -0.117 V (vs. SCE) and -0.193 V (vs. SCE). In combination of these investigations, this document introduces thorough study of novel materials and their performance in its application as ORR catalyst in metal air batteries. Moreover, this report provides detailed fundamental insights of carbon allotropes, and their properties as potential elecrocatalysts and essential concepts in electrochemistry that lies behind zinc-air batteries. The outstanding performances of carbon based electrocatalyst are reviewed and used as the guides for further direction in the development of metal-air batteries as a promising sustainable energy resource in the future.

Book Graphene Science Handbook  Six Volume Set

Download or read book Graphene Science Handbook Six Volume Set written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-26 with total page 3379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)

Book Advanced Catalytic Materials

Download or read book Advanced Catalytic Materials written by Noreña Luis and published by BoD – Books on Demand. This book was released on 2016-02-03 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Todays chemical industry processes worldwide largely depend on catalytic reactions and the desirable future evolution of this industry toward more selective products, more environmentally friendly products, more energy-efficient processes, a smaller use of hazardous reagents, and a better use of raw materials also largely involves the development of better catalysts and, specifically, purposely designed catalytic materials. The careful study and development of the new-generation catalysts involve relatively large groups of specialists in universities, research centers, and industries, joining forces from different scientific and technical disciplines. This book has put together recent, state-of-the-art topics on current trends in catalytic materials and consists of 16 chapters.

Book Applied Polyoxometalate Based Electrocatalysis

Download or read book Applied Polyoxometalate Based Electrocatalysis written by Diana M. Fernandes and published by John Wiley & Sons. This book was released on 2025-01-13 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-researched reference on stable alternative electrocatalysts and electrode materials with the potential to transform chemistry and processes in sensor and energy related technologies Applied Polyoxometalate-Based Electrocatalysis delivers an overview of the variety of efficient applications of free POM and POM-based (nano)composites as exciting materials in the field of electrocatalysis. With a variety of sizes, shapes, composition, and physical and chemical properties, these composites have important properties, such as the ability to undergo reversible multivalence reductions/oxidations, leading to the formation of mixed-valence species, which brings about favorable electrocatalytic properties with regard to several electrochemical processes. Written by a highly qualified independent researcher internationally recognized for her contributions to materials for electrochemical energy-related reactions, Applied Polyoxometalate-Based Electrocatalysis includes information on: General methodologies used in the preparation of free POMs and POM-based nanocomposites and different strategies employed in electrode modification Role of POM-modified electrodes in oxidative and reductive electrocatalysis, including the detection/sensing of several (bio)molecules of interest and carbon dioxide electroreduction Application of POM-based (nano)composites, including the oxygen reduction reaction relevant to fuel cells, the oxygen and hydrogen evolution reactions, and batteries and supercapacitors Applied Polyoxometalate-Based Electrocatalysis is an essential reference on the subject for chemists, material scientists, chemical engineers, and institutions involved in work related to free POM and POM-based (nano)composites.

Book Developing Enhanced Mixed Metal Oxide Catalysts for Electrocatalytic Water Oxidation Using Insights from X ray Absorption Spectroscopy

Download or read book Developing Enhanced Mixed Metal Oxide Catalysts for Electrocatalytic Water Oxidation Using Insights from X ray Absorption Spectroscopy written by Linsey C. Seitz and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient and economic conversion of renewable energy sources is critical for development of technologies that can shift global energy dependence away from fossil fuels. Increased global energy consumption along with heightened awareness of environmental, health, and political issues with fossil fuels are driving the need for alternative technologies. Wind and sun provide more than enough energy to meet the growing energy demand, provided that challenges with intermittency, scale, and cost-effectiveness can be overcome. These obstacles can be mitigated through development of highly active catalysts using abundant and inexpensive materials to convert solar and wind energy into fuels and chemicals. One promising method of converting solar energy into fuel is by splitting water to produce hydrogen and oxygen. This can be achieved using a monolithic photoelectrochemical (PEC) water splitting device which combines photon-absorbing semiconductors with catalysts that drive the respective reactions or a photovoltaic/electrolyzer system which separates these two components. The first part of this thesis presents a model to quantify loss mechanisms in PEC water splitting based on the current state of materials research and calculate maximum solar-to-hydrogen (STH) conversion efficiencies. Results of this model indicate that a major limitation to the efficiency of solar-driven electrochemical water splitting is the oxygen evolution reaction (OER) which requires significant overpotential beyond the thermodynamic redox potential to proceed. The remainder of this dissertation focuses on understanding the interaction between metals in mixed metal oxide catalysts for the OER using electrochemical and advanced spectroscopic techniques towards the development of highly active and stable catalysts. Mixed metal oxide catalysts provide a robust platform for tuning binding energies of OER reaction intermediates to the catalyst surface, thereby affecting activity, through controlled material composition and geometry. We investigate two distinct mixed metal oxide catalyst systems using X-ray absorption spectroscopy (XAS) to probe local geometric and electronic structure and correlate the results with changes in activity. XAS is a synchrotron based technique which provides elemental-specific information by exciting electronic transitions from core to valence orbitals at various elemental edges. XAS studies at the Co K and L edges for a cobalt titanium oxide (CoTiOx) catalyst system identify stabilization effects on the Co oxidation state and overall structure from varying amounts of Ti precursor used during material synthesis. XAS before and after catalyst exposure to OER conditions indicate that catalysts with the least long range order become most oxidized and exhibit the highest activities. Similarly, in situ XAS at the Mn K and Au LIII edges reveal that there is a charge transfer at interfacial sites between manganese oxide (MnOx) and gold (Au) under OER conditions which coincides with significantly increased OER activity compared to MnOx without Au. Our results indicate that Au facilitates stabilization of more oxidized phases of Mn at lower overpotentials, thereby allowing for earlier onset of OER and higher activity. Lastly, we present an investigation of a novel mixed metal oxide catalyst, strontium iridium oxide (SrIrO3) which has the highest reported activity for any known OER catalyst. While it depends on use of Ir, a precious metal, its remarkably high activity compared to rutile IrO2 reduces the Ir loading necessary to achieve similar current densities. In summary, this dissertation explores a broad spectrum of catalysts for the oxygen evolution reaction and uses advanced material characterization methods to draw correlations between the structure, oxidation state, and catalytic activity for these materials. This work provides fundamental insight towards improving efficiency of electrochemical water oxidation processes for the conversion of renewable energy sources to fuels and chemicals.

Book Graphene Science Handbook

Download or read book Graphene Science Handbook written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the Practical Applications and Promising Developments of GrapheneThe Graphene Science Handbook is a six-volume set that describes graphene's special structural, electrical, and chemical properties. The book considers how these properties can be used in different applications (including the development of batteries, fuel cells, photovoltaic

Book Advancing Electrocatalysis with Atomistic Insights and Operando Methods

Download or read book Advancing Electrocatalysis with Atomistic Insights and Operando Methods written by Rui Zeng and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrocatalysis is the keystone to realize the transition from a fossil fuels-based energy landscape to one dominated by renewable energy sources. However, the sluggish reaction kinetics and low selectivity have severely limited their broad application. In this dissertation, I aim to advance electrocatalysis by combining atomistic insights to design high-performance electrocatalysts, and operando methods to reveal dynamic changes of electrocatalysts and reactants/products under real-time electrochemical conditions.As one of the most valuable operando techniques for electrocatalysis, differential electrochemical mass spectrometry (DEMS) was extensively employed to identify the potential dependent dynamic formation of gaseous or volatile products during the formic acid oxidation and alkene hydrogenation reactions. The successful employment of a dual-thin-layer flow cell enabled quantification of the current efficiencies of the main products and side products in the oxidation of formic acid, catalyzed by a series of Pt-Fe-Cu intermetallics. Lattice strain was proposed to account for the observed differences in current efficiencies based on a dual-pathway mechanism. DEMS was further used to evaluate alkene hydrogenation catalyzed by cobalt complexes, in which hydrogen signals were monitored as key products. The suppressed hydrogen evolution along with increased Faradaic current provided compelling evidence for alkene hydrogenation. Furthermore, the effects of electronic properties of catalysts and alkene structures on alkene hydrogenation efficiency were systematically investigated. Developing non-precious electrocatalysts for the sluggish kinetics of the oxygen reduction reaction (ORR) is regarded as one of the key bottlenecks for anion exchange membrane fuel cells (AEMFCs). I demonstrated that cobalt nitride electrocatalysts could overcome the conductivity challenge of oxide counterparts and enhance ORR performance by combining a conductive nitride core and an active oxide shell. Further, a systematic study of a family of transition metal nitrides identified cobalt nitride as the most active single metal nitride ORR electrocatalyst, which was in turn extensively evaluated by operando X-ray absorption spectroscopy during operating conditions. To unveil the underlying structure-property relationships in transition metal nitride electrocatalysts, we successfully synthesized well-defined manganese nitride nanocuboids and enriched an atomistic understanding of the interface between the surface oxide and the nitride core. A combination of theoretical calculations and microscopic study revealed that the ligand effects of the nitride core played a major role in determining the ORR performance of the surface oxide, rather than the effects of the applied tensile strain. Finally, I showed that a rigorous and systematic study of single-crystalline metal oxide/nitrides could benefit mechanistic understanding of ORR electrocatalysis for transition metal-based materials.

Book Electrocatalytic Hydrogen Production  Catalysts and Applications

Download or read book Electrocatalytic Hydrogen Production Catalysts and Applications written by Xiang Peng and published by Materials Research Forum LLC. This book was released on 2024-06-05 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the fundamental principles, materials, and strategies involved in the design and development of catalysts for electrocatalytic hydrogen production. Keywords: Metal based Catalysts, Single Atomic Catalysts, Carbides, Nitrides, Phosphides, Oxides, Sulfides, Selenides, Composite Electrocatalysts, Heterostructured Electrocatalysts, Precious Metal-based Electrocatalysts, Transition Metal Compound Catalysts, Surface Structure Modulation, Catalysts for Oxygen Evolution, Electrolyzers.

Book Carbon Based Nanomaterials for Energy Conversion and Storage

Download or read book Carbon Based Nanomaterials for Energy Conversion and Storage written by Jia-Nan Zhang and published by Springer Nature. This book was released on 2022-08-26 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically summarizes the advanced development of carbon-based nanomaterials for electrochemical catalysis, and it is comprised of four sections. The first section discusses about the fundamental synthesis, characterization techniques, and catalytic effects on the energy conversion and storage mechanism. The second section elaborately reviews various types of electrocatalytic reactions on carbon-based materials and their performance. The third section focuses on batteries about carbon-based materials with different storage mechanism. And the last one, the following enlightenment in terms of theoretical development and experimental research is provided to the general readers: 1) Precise design and construction of local atomic and electronic structures at the interface of catalysts; 2) Selective activation and directed conversion of carbon-based energy-carrying molecules at the interface; 3) Interaction mechanism and regulation of catalyst solid surface interface properties under environment and external field. This book will be useful for researchers and students who are interested in carbon-based nanomaterials, electrochemical catalysts and energy storage.