EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metal Organic Chemical Vapor Deposition and Atomic Layer Deposition of Strontium Oxide Films on Silicon Surfaces

Download or read book Metal Organic Chemical Vapor Deposition and Atomic Layer Deposition of Strontium Oxide Films on Silicon Surfaces written by Amalia C. Cuadra and published by . This book was released on 2007 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epitaxial oxide films like strontium titanate (SrTiO3) grown on silicon have a wide range of potential applications, including high k-dielectric devices, ferroelectrics, optoelectronics, and buffer layers for the heteroepitaxy of III-V semiconductor as well other pervoskites and high-Tc superconductors. The crystalline structure of SrTiO3 consists of alternating sublayers of SrO and TiO2. The epitaxy of SrTiO3 on Si(100) must be initiated with the nucleation of the SrO sublayer first. This thesis presents the methodology used for growing SrO on Si(100) surfaces via metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). Sr(2,2,6,6-tetramethyl-3,5-heptanedionate) 2 [Sr(thd)2] is the beta-diketonate precursor used to conduct these film growth studies, but the use of this class of metal organic sources comes with several challenges. First, their thermal properties change with atmospheric exposure. Second, successful control of vapor delivery is challenging because beta-diketonates have low vapor pressures and their decomposition temperature is close to their vaporization temperature. Additionally, film growth results are difficult to reproduce because these compounds degrade with time. To overcome these challenges, we developed a Sr(thd)2 delivery scheme using a novel source vaporizer that successfully controls the vaporization and vapor transport to the growth surface under steady vapor pressure while preventing the decomposition of the solid source. This vaporization scheme has been able to grow SrO films on Si(100) with high uniformity and low carbon contamination, as shown with ex-situ Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). The MOCVD experiments provided enough evidence to encourage ALD investigations which incorporated the integration of the controlled vaporization with a ultra high vacuum (UHV) reaction chamber that provided the ability to conduct growth experiments on functionalized Si(100) surfaces. The ability to tune the chemistry on the Si(100)-2x1 surface can aid in guiding surface reactions of the metal organic precursor with the growth surface. Our goal has been to hydroxyl terminate the Si(100)-2x1 surface in order to nucleate SrO monolayers. Following the desorption of a protective chemical oxide layer, dissociative chemisorption of H2O is carried out in UHV to hydroxyl terminated Si(100)-2x1. Metal oxide growth can be correlated to the concentration of hydroxyl groups on the silicon surface due to the facilitation of ligand exchange from the surface. Furthermore, hydroxyl-terminated surfaces initiate two-dimensional nucleation of the metal oxide while avoiding incubation periods common to the ALD of metal oxide. In-situ AES and low energy electron diffraction LEED were used to investigate the crystalline quality of the nucleated monolayers and the epitaxial orientation of SrO films on Si(100)-2x1 surfaces. The results of the ALD experiments were, unfortunately, inconsistent. Nonetheless, the focus of this thesis is to show the methodology for developing growth protocols that can be used in ALD reactions on functionalized Si(100)-2x1 surfaces for the epitaxy of metal oxides.

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces

Download or read book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces written by Lei Guo and published by . This book was released on 2015 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: A versatile home-made atomic layer deposition (ALD) reactor was designed and built in our lab. This reactor can be used to deposit metal oxides on both wafer substrates and porous inorganic particles. Also, a simple procedure for selective ALD has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with silanes was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O 3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O 3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2 O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces. We believe that the silylation-UV/O 3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.

Book Atomic Layer Deposition Applications 13

Download or read book Atomic Layer Deposition Applications 13 written by F. Roozeboom and published by The Electrochemical Society. This book was released on with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Study of the Initial Surface Reactions in Atomic Layer Deposition of Oxides  Silicides and Nitrides Thin Films on Silicon Substrates

Download or read book Study of the Initial Surface Reactions in Atomic Layer Deposition of Oxides Silicides and Nitrides Thin Films on Silicon Substrates written by Karla Maria Bernal Ramos and published by . This book was released on 2014 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, key aspects of the surface chemistry associated with atomic layer deposition (ALD) are discussed. ALD is a novel and promising film deposition technique that can deliver precise thickness control at the angstrom or monolayer level; the self-limiting aspect of ALD makes it a unique method that can lead to excellent step coverage and conformal deposition on high aspect ratio structures. In spite of its central role in efficient film deposition processes, little is known about the mechanisms of the chemical reactions involved. Even the most basic information, such as the initial surface reactions, is in many instances unknown. There is a limited knowledge on the surface chemistry (e.g., substrate, precursor's reactivity) effects for the growth of the films. Reactivity in ALD is controlled by the nature of the substrate, where specific nucleation sites are often responsible for the initial deposition and where a change in chemistry may take place as the first layer of the growing film is formed. The precursor's reactivity towards the surface being used and its properties are fundamental aspects in an ALD process. The majority of the experiments discussed in this dissertation are devoted to the elucidation of the reaction mechanisms of the thin films. The experiments are carried out using in-situ Fourier transform infrared spectroscopy (FTIR) in order to examine the chemical composition of surface adsorbates. The use of in-situ characterization techniques is crucial for better control and understanding of thin film deposition. Knowledge of the surface chemistry underpinning the ALD processes is essential in order to design precursors in a rational way that will lead to successful film growth.

Book Masters Theses in the Pure and Applied Sciences

Download or read book Masters Theses in the Pure and Applied Sciences written by Wade H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the though that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemi nation. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 37 (thesis year 1992) a total of 12,549 thesis titles from 25 Canadian and 153 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 37 reports theses submitted in 1992, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.

Book Atomic Layer Deposition for Surface Modifications and Solid Film Fabrication

Download or read book Atomic Layer Deposition for Surface Modifications and Solid Film Fabrication written by Haoming Yan and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with the unceasing development of the surface and material science, modification of substrates surfaces in nanoscale, to fabricate the functional materials with precisely controlled dimensions, refined composition and desired properties becomes crucial. In this report, atomic layer deposition (ALD), a vapor phase, sequential and self-limiting deposition process, has been used as an alternative strategy to modify the surface of materials and fabricates nanometer or micrometer level of functional materials with precise control. In the first part of this dissertation, ALD was used to modify the surface of the shape-engineered nanocrystals (SENCs), which enhanced the thermal stability of the SENCs from 300?C to 700?C and enhanced the catalytic activities of the nanocrystals as well. We also proposed a new reaction mechanism of metal-organic precursor with oxide surface, in which the conventional layered ALD growth does not happen but the oxide surface was modified via controlled metal doping. In the second part of this dissertation, ALD precursors were used to reacting with liquid substrates to fabricate freestanding solid thin films. Benefits from the unique reaction mechanism of the ALD metal-organic precursors, the thickness and the compositions of the fabricated films can be controlled. The fundamental of gas-liquid reaction has been discussed in this study. In the third part of this dissertation, area-selective ALD (AS-ALD) has been reported using carboxylic acid self-assembled monolayer as a growth inhibitor. Excellent selectivity of AS-ALD has been achieved by using this method, which could potentially be used in microfabrication as a substitution step for photolithography.

Book Development and Applications of Oxide Thin Films Using Atomic Layer Deposition and Prompt Inorganic Condensation

Download or read book Development and Applications of Oxide Thin Films Using Atomic Layer Deposition and Prompt Inorganic Condensation written by Sean Weston Smith and published by . This book was released on 2015 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first part of this work, thin films of Al2O3 deposited via atomic layer deposition (ALD) are demonstrated to improve the thermal stability of cellulose nanocrystal (CNC) aerogels. ALD is a chemical vapor deposition (CVD) like method in which sequential precursor exposures and self-limited surface reactions produce a conformal thin film with precise thickness control. The conformal nature of ALD is well suited to coating the porous microstructure of aerogels. SEM micrographs of coating thickness depth profiles are shown to agree with trends predicted by precursor penetration models. Thermogravimetric analysis shows samples coated with ALD Al2O3 have increased decomposition temperatures. In the second part of this work, ALD zinc tin oxide (ZTO) is used to demonstrate a technique for measuring the substrate inhibited growth in multicomponent and laminate ALD systems. The thickness control of ALD makes it attractive for multicomponent and laminate systems. However, the surface reactions of ALD mean that the first few cycles, while the film nucleates, may have a different growth per cycle (GPC) than when the film is growing on itself in a bulk growth regime. A model for the substrate inhibited ALD of ZTO is derived from two complementary sets of laminates. The thickness and composition predictions of our model are tested against the bulk GPC of ZnO and SnO2. In the final part of this work, prompt inorganic condensation (PIC) is explored as a potentially more environmentally friendly alternative to ALD for planar thin film applications. Whereas ALD requires expensive vacuum systems and has low precursor utilization, solution based methods, such as PIC, allow atmospheric processing and precursor recycling. The water based PIC solutions use nitrate counter ions which evaporate at low temperatures. Combined with the low energy required to convert the hydroxide precursor clusters into an oxide film makes PIC a promising low temperature route to dense solution processed thin films. The dielectric performance of PIC Al2O3 is shown to be comparable to ALD Al2O3 films on Si though a large interfacial SiO2 layer is found to be dominating the behavior of the PIC films. This interfacial layer is shown to form very quickly (≤ 2 min) at low temperatures (≤ 50°C). This low temperature interfacial oxide growth could be a benefit in passivating solar cells.

Book Thin Films  Atomic Layer Deposition  and 3D Printing

Download or read book Thin Films Atomic Layer Deposition and 3D Printing written by Kingsley Ukoba and published by CRC Press. This book was released on 2023-11-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Films, Atomic Layer Deposition, and 3D Printing explains the concept of thin films, atomic layers deposition, and the Fourth Industrial Revolution (4IR) with an aim to illustrate existing resources and give a broader perspective of the involved processes as well as provide a selection of different types of 3D printing, materials used for 3D printing, emerging trends and applications, and current top-performing 3D printers using different technologies. It covers the concept of the 4IR and its role in current and future human endeavors for both experts/nonexperts. The book includes figures, diagrams, and their applications in real-life situations. Features: Provides comprehensive material on conventional and emerging thin film, atomic layer, and additive technologies. Discusses the concept of Industry 4.0 in thin films technology. Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications. Explores detailed bibliometric analyses on pertinent applications. Interconnects atomic layer deposition and additive manufacturing. This book is aimed at researchers and graduate students in mechanical, materials, and metallurgical engineering.

Book Chemical Solution Deposition of Functional Oxide Thin Films

Download or read book Chemical Solution Deposition of Functional Oxide Thin Films written by Theodor Schneller and published by Springer Science & Business Media. This book was released on 2014-01-24 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Book In Situ Infrared Spectroscopy Study of Atomic Layer Deposition of High kappa Metal Oxide and Metal on Passivated Silicon Surfaces

Download or read book In Situ Infrared Spectroscopy Study of Atomic Layer Deposition of High kappa Metal Oxide and Metal on Passivated Silicon Surfaces written by and published by . This book was released on 2008 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic layer deposition (ALD) is a novel and promising film deposition method for microelectronics and many other areas with documented commercial success. Notable advantages include accurate thickness control and high conformality, all of which are particularly important for deep trenches, porous materials and nanoparticles. The key elements of ALD including starting surfaces and precursors are investigated with in situ Fourier transform infrared spectroscopy, using a variety of starting surfaces: hydrogen-terminated Si (H/Si), oxidized Si, nitrided Si, and self-assembled monolayers (SAMs) grafted on H/Si surfaces. In particular, the formation of nitrided surfaces using thermal NH3 reaction with flat and vicinal H/Si(111) is studied and a mechanistic understanding is achieved with the aid of density functional theory calculation. An unexpected NH incorporated bridging structure is found at the dihydride step edge. The properties and stability of methyl and carboxylic groups terminated alkene-based SAMs grafted to H/Si(111) surface via direct Si-C bonds are also addressed. The carboxylic groups terminated SAM can be grafted without formation of interfacial SiO2. Moreover, the use of SiNx and SAM successfully minimizes the interfacial SiO2 during ALD process. With a thorough understanding of the starting surfaces, the nature of ALD grown high-kappa metal oxides and metal is studied. Water- and ozone-based ALD of HfO2 and Al2O3 are investigated mechanistically. Unexpected intermediate species and reaction pathways are found to depend on ozone partial pressure, such as formate intermediate for Al2O3 deposition. La2O3 and Cu deposited by novel precursors, La(iPr-MeAMD)3/D2O and [Cu(sBu-amd)]2/H2 respectively, are explored in many aspects such as the nature of precursor gas phase, the ALD temperature window, the film properties, and so on. In all cases, a mechanistic picture of the surface interaction and film growth is unraveled using infrared spectroscopy and other complementary techniques, such as Rutherford back scattering spectroscopy and X-ray photoelectron spectroscopy. Gas phase studies show that the two precursors are both readily hydrolyzed and highly reactive. ALD-deposited La2O3 films are of poor quality due to the hygroscopic nature of La2O3, and Cu diffusion and agglomeration are inferred from the evolution of IR vibrational modes.

Book Metalorganic Vapor Phase Epitaxy  MOVPE

Download or read book Metalorganic Vapor Phase Epitaxy MOVPE written by Stuart Irvine and published by John Wiley & Sons. This book was released on 2019-10-07 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Book Atomic Hydrogen Assisted Chemical Vapor Deposition and Etching of Silicon Thin Films

Download or read book Atomic Hydrogen Assisted Chemical Vapor Deposition and Etching of Silicon Thin Films written by Shuangying Yu and published by . This book was released on 1996 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Organometallic Chemistry

    Book Details:
  • Author : Nathan J Patmore
  • Publisher : Royal Society of Chemistry
  • Release : 2018-11-16
  • ISBN : 1788010671
  • Pages : 210 pages

Download or read book Organometallic Chemistry written by Nathan J Patmore and published by Royal Society of Chemistry. This book was released on 2018-11-16 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the increase in volume, velocity and variety of information, researchers can find it difficult to keep up to date with the literature in their field. Providing an invaluable resource, this volume contains analysed, evaluated and distilled information on the latest in organometallic chemistry research and emerging fields. The reviews range in scope and include π-coordinated arene metal complexes and catalysis by arene exchange, rylenes as chromophores in catalysts for CO2 photoreduction, metal nodes and metal sites in metal–organic frameworks, developments in molecular precursors for CVD and ALD, and multiphoton luminescence processes in f-element containing compounds.