EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book METAL METAL OXIDE NANOPARTICLE

Download or read book METAL METAL OXIDE NANOPARTICLE written by 杨纯臻 and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Metal/metal oxide nanoparticles supported on nanostructured carbons for electrochemical applications" by 杨纯臻, Chunzhen, Yang, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Among various electrochemical devices that have been developed for energy storage and conversion, electric double layer capacitors (EDLCs) and direct methanol fuel cells (DMFC) have received much research attention. Nanostructured carbon materials have been playing an important role in the development of these devices, due to such characteristics as good electrical conductivity, high chemical stability, high surface area and large pore volumes and etc. In an EDLC, nanostructured carbon electrodes, possessing pores of varied length scales, can deliver electric energy at high current loadings. This kind of pore structure also benefits the deposition of metal catalysts and the transport of reactants and products in the methanol oxidation reaction. In order to systematically study the structural effects on the electrochemical capacitance and ionic transport, a series of three-dimensional hierarchical carbons with hollow core-mesoporous shell (HCMS) structure were template-synthesized. Periodically ordered macroscopic hollow cores of 330 nm in diameter were surrounded by a mesoporous shell containing uniform pores of 3.9 nm. The shell thickness was stepwise increased from 0, 25, 50 to 100 nm. The HCMS structure was modeled by a 5-level transmission line model to study the capacitance contribution from the pores at different length scale. Results revealed that the HCMS carbon with thicker mesoporous shells can provide high capacitance, while thinner shells could deliver high power output. A series of HCMS carbon sphere supported Pt nanoparticles were synthesized via the "Carbonization over Protected and Dispersed Metal" (CPDM) method. Contrary to the conventional "polyol" synthetic method, whereas most of Pt nanoparticles were deposited on the external surface of carbon spheres; the Pt nanoparticles synthesized via the CPDM method were found encapsulated in the mesoporous carbon shells and highly dispersed throughout the carbon texture. "Accelerated stress tests‟ (ASTs) were conducted to investigate the nanopores confinement effect toward the electrochemical stability of these Pt catalysts. Results revealed that (1) the nanopores confined Pt nanoparticles on HCMS carbon spheres exhibited a stable electrochemical active surface area (ECSA) and catalytic activity; and (2) thick mesoporous carbon shells could provide better protection over the Pt nanoparticles. This "CPDM" method was further extended to synthesize highly alloyed PtRu nanoparticles supported electrocatalysts. It is expected that this CPDM method can also be applied to synthesize other metal/metal oxide supported catalysts with stable electrochemical performance. WO3 has been demonstrated as a promsing co-catalyst for Pt in the methanol oxidation reaction (MOR). The synthesis of Pt-WO3/C catalyst with well-controlled nanoparticle size (2.5 nm) and composition was achieved via a microwave-assisted water-oil microemulsion reaction. Hydrogen adsorption, CO-stripping and Cu- stripping methods were used to estimate the ECSA of Pt in the Pt-WO3/C catalysts. Among these, Cu-stripping method was relatively more reliable due to the overlapping involvement of the WO3 component in the other methods. The methanol oxidation measurement shows that a 1:1 Pt: W ratio catalyst exhibits the highest Pt-mass current density of 271 mA mg-1-Pt, 1.4 times higher than that of commercial E-TEK catalyst.

Book Fabrication of Metal   Organic Framework Derived Nanomaterials and Their Electrochemical Applications

Download or read book Fabrication of Metal Organic Framework Derived Nanomaterials and Their Electrochemical Applications written by Wei Xia and published by Springer. This book was released on 2018-04-03 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.

Book Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Book Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices

Download or read book Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices written by Vijay B. Pawade and published by CRC Press. This book was released on 2020-05-21 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.

Book Synthesis  Properties  and Applications of Oxide Nanomaterials

Download or read book Synthesis Properties and Applications of Oxide Nanomaterials written by José A. Rodriguez and published by John Wiley & Sons. This book was released on 2007-03-30 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.

Book Nanostructured Metal Oxide Electrode Materials for Water Purification

Download or read book Nanostructured Metal Oxide Electrode Materials for Water Purification written by Onoyivwe Monday Ama and published by Springer Nature. This book was released on 2020-04-07 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the development of nanostructured metal-oxide-based electrode materials for use in water purification. The removal of organic pollutants and heavy metals from wastewater is a growing environmental and societal priority. This book thus focuses primarily on new techniques to modify the nanostructural properties of various solvent-electrolyte combinations to address these issues. Water treatment is becoming more and more challenging due to the ever increasing complexity of the pollutants present, requiring alternative and complementary approaches toward the removal of toxic chemicals, heavy metals and micro-organisms, to name a few. This contributed volume cuts across the fields of electrochemistry, water science, materials science, and nanotechnology, while presenting up-to-date experimental results on the properties and synthesis of metal-oxide electrode materials, as well as their application to areas such as biosensing and photochemical removal of organic wastewater pollutants. Featuring an introductory chapter on electrochemical cells, this book is well positioned to acquaint interdisciplinary researchers to the field, while providing topical coverage of the latest techniques and methodology. It is ideal for students and research professionals in water science, materials science, and chemical and civil engineering.

Book Tailored Functional Oxide Nanomaterials

Download or read book Tailored Functional Oxide Nanomaterials written by Chiara Maccato and published by John Wiley & Sons. This book was released on 2022-03-07 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tailored Functional Oxide Nanomaterials A comprehensive exploration of the preparation and application of metal oxide nanomaterials Tailored Functional Oxide Nanomaterials: From Design to Multi-Purpose Applications delivers a one-of-a-kind discussion of the fundamentals and key applications of metal oxide nanomaterials. The book explores everything from their preparation to the mastering of their characteristics in an interdisciplinary view. The distinguished authors address theoretical research and advanced technological utilizations, illustrating key issues for the understanding and real-world end-uses of the most important class of inorganic materials. The interplay between the design, preparation, chemico-physical characterization, and functional behaviors of metal oxide nanomaterials in a variety of fields is presented. Up-to-date work and knowledge on these materials is also described, with fulsome summaries of important applications that are relevant to researchers pursuing safety, sustainability, and energy end-uses. Readers will also find: A thorough introduction to vapor phase growth of metal oxide thin films and nanostructures Comprehensive explorations of addressing complex transition metal oxides at the nanoscale, including bottom-up syntheses of nano-objects and properties Practical discussions of nanosized oxides supported on mats of carbon nanotubes, including synthesis strategies and performances of Ti/CNT systems In-depth examinations of computational approaches to the study of oxide nanomaterials and nanoporous oxides Perfect for materials scientists, inorganic chemists, physicists, catalytic chemists, and chemical engineers, Tailored Functional Oxide Nanomaterials will also earn a place in the libraries of solid-state chemists.

Book Nano Metal Oxides

    Book Details:
  • Author : B. Karthikeyan
  • Publisher : Springer Nature
  • Release : 2023-03-07
  • ISBN : 9811994447
  • Pages : 122 pages

Download or read book Nano Metal Oxides written by B. Karthikeyan and published by Springer Nature. This book was released on 2023-03-07 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights theoretical and experimental facts about selective nano-metal oxides. TiO2 ,ZnO and transition metal oxides which are known to be semiconductors and find applications in various fields. This book presents about recent findings like photo catalysis, sensing ,coating and biomedical applications. Therapeutic and future applications that are recently been reported of various metal oxides are presented in this book.

Book Metal  Metal Oxides and Metal Sulphides for Biomedical Applications

Download or read book Metal Metal Oxides and Metal Sulphides for Biomedical Applications written by Saravanan Rajendran and published by Springer Nature. This book was released on 2021-01-25 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in inorganic nanomaterials for healthcare, with focus on the synthesis, medical applications and toxicity of metals, metal oxides and metal sulfides. Major applications include diagnosis, bioimaging, biosensing, healing and therapy in cancer, diabetes, cardiovascular diseases, obesity, metabolic syndrome, dentistry and antimicrobials.

Book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells  Electrolyzers  and Metal Air Batteries

Download or read book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells Electrolyzers and Metal Air Batteries written by Teko Napporn and published by Elsevier. This book was released on 2021-01-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications

Book Metal Oxide Carbon Hybrid Materials

Download or read book Metal Oxide Carbon Hybrid Materials written by Muhammad Akram Chaudhry and published by Elsevier. This book was released on 2022-03-20 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide–carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide–carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide–carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials’ properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide–carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide–carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide–carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. Reviews the fundamental properties and fabrication methods of metal-oxide–carbon composites Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors Includes current and emerging applications in environmental remediation and sensing

Book Metal  Metal Oxides and Metal Sulfides for Batteries  Fuel Cells  Solar Cells  Photocatalysis and Health Sensors

Download or read book Metal Metal Oxides and Metal Sulfides for Batteries Fuel Cells Solar Cells Photocatalysis and Health Sensors written by Saravanan Rajendran and published by Springer Nature. This book was released on 2021-04-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes recent findings on the use of new nanostructured materials for biofuels, batteries, fuel cells, solar cells, supercapacitors and health biosensors. Chapters describe principles and how to choose a nanomaterial for specific applications in energy, environment and medicine.

Book Functional Metal Oxide Nanostructures

Download or read book Functional Metal Oxide Nanostructures written by Junqiao Wu and published by Springer Science & Business Media. This book was released on 2011-09-22 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.

Book Optical Properties of Metal Oxide Nanostructures

Download or read book Optical Properties of Metal Oxide Nanostructures written by Vijay Kumar and published by Springer Nature. This book was released on 2023-10-25 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.

Book Nanostructure of Transition Metal and Metal Oxide for Electrocatalysis

Download or read book Nanostructure of Transition Metal and Metal Oxide for Electrocatalysis written by Yanjuan Gu and published by Open Dissertation Press. This book was released on 2017-01-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Nanostructure of Transition Metal and Metal Oxide for Electrocatalysis" by Yanjuan, Gu, 谷艳娟, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Abstract of thesis entitled NANOSTRUCTURE OF TRANSITION METAL AND METAL OXIDE FOR ELECTROCATALYSIS Submitted by Gu Yan Juan for the degree of Doctor of Philosophy at The University of Hong Kong in August 2006 Pd, Pt, and Ru nanoparticles that were uniformly dispersed on multi-walled carbon nanotubes (MWNTs) were synthesized by vacuum pyrolysis using metal acetylacetonate as metal precursor, and the nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X- ray diffraction (XRD). The size and distribution of the nanoparticles were strongly affected by the reaction time, temperature, and the initial mass ratio of the metal precursors to MWNTs. The higher temperature, the smaller Pd nanoparticles were formed at the range of 250 to 500 C. The average size of the Pd nanoparticles increased with the increase in mass ratio of the metal precursors to MWNTs. The particle size of Pt and Ru showed little change with the change in mass ratio. Pt and Ru nanoparticles had the mean diameters of 3.00.6 and 2.50.4 nm when the mass ratio of Pt(acac) and Ru(acac) to 2 3 MWNTs was both 2:1 at 500 C. The electrocatalytic activity of Pt/MWNTs and PtRu/MWNTs was investigated at room temperature by cyclic voltammetry and chronoamperometry. All of the electrochemical results showed that the PtRu/MWNTs catalyst exhibit high activity for methanol oxidation that resulted from the high surface area of carbon nanotubes and the platinum/ruthenium nanoparticles. Compared with Pt/MWNTs, the onset potential is much lower and the ratio of forward anodic peak current to reverse anodic peak current is much higher for methanol oxidation. Pt Ru /MWNTs displayed the best electrocatalytic 45 55 activities among all carbon nanotubes supported Pt and PtRu catalysts. Hyperbranched RuO nanostructures can be formed through the oxidation of Ru nanoparticles at relatively low temperatures in air, which is a very simple and low cost method. The morphology of the RuO nanostructure is closely associated with the dispersivity of the Ru nanoparticles on the MWNTs. Cu, Pt and Pd nanoparticles are very effective catalysts in the formation of RuO hyperbranched nanostructures. The electrochemical studies of these nanorods demonstrated that they display characteristic properties of RuO (110) surface. The successful attachment of Pt nanoparticles to RuO surface through a simple, two-step chemically controlled procedure is reported. The effect of the single crystal structure of RuO nanorods on the electrocatalytic activity of Pt nanoparticles was investigated, showing that the presence of the RuO nanorods greatly increases the electrochemical activity of electrodes toward methanol oxidation, not only increasing the current density but also shifting the onset potential of methanol electrooxidation to over 200 mV lower than that on the Pt nanoparticle electrode. The results described here also demonstrate the ability of metal oxide nanorods to serve as a conductive support for fuel cell applications. DOI: 10.5353/th_b3777439 Subjects: Electrocatalysis Transition metals Nanoparticles Nanostructured materials Methanol - Oxidation