EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs

Download or read book Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs written by Mukul N. Chavan and published by . This book was released on 2015 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improvement in the recovery of oil by low or reduced salinity water has been reported by many researchers. However, a consistent mechanistic explanation behind low salinity waterflood has not yet emerged. A thorough literature review was conducted that pertains to low salinity water based enhanced oil recovery and preliminary screening criteria were proposed which may help in narrowing down the responsible mechanisms and identifying suitable candidates for low salinity waterflood. Altogether nine different variables, such as clays, oil characteristics, salinity ranges etc. were considered in developing the screening criteria. With the exception of some tests on standard Berea sandstone cores, all other experimental studies were carried out on representative Alaska North Slope (ANS) reservoir core samples and oil and brine samples. Experimental studies involved a direct visualization of the release of crude oil from the clay surface with low salinity waterflood as observed through a simple substrate type test. Amott type spontaneous displacement tests were performed to quantitatively determine the effect of low salinity water using core materials containing different types of clays. Two sets of low salinity water coreflooding experiments were conducted in the tertiary recovery mode; first using dead oil and the second using recombined oil at pseudo reservoir conditions to examine the potential in improving oil recovery. Oil recoveries were also compared with continuous injection vs slug-wise injection of low salinity water. Finally, surface level investigation was performed using an optical microscope to visually analyze the impact of low salinity water on core samples. All the experiments performed with low salinity water on Alaska North Slope (ANS) reservoir core samples consistently showed anywhere between a 3-30 % increase in oil production with the use of low salinity brine. The literature review identified wettability alteration, cation exchange capacity, clay type and clay content as some of the dominant mechanisms influencing low salinity waterflooding.

Book Experimental Investigation of Nonthermal Enhanced Oil Recovery Techniques for Improving Oil Recovery on Alaska North Slope

Download or read book Experimental Investigation of Nonthermal Enhanced Oil Recovery Techniques for Improving Oil Recovery on Alaska North Slope written by and published by . This book was released on 2022 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploitation of viscous and heavy oils on Alaska North Slope (ANS) requires nonthermal enhanced oil recovery (EOR) techniques. Currently, three nonthermal EOR methods, including solvent injection, low salinity water (LSW) flooding, and low salinity polymer (LSP) injection, have been proved to be useful on ANS. ANS viscous and heavy oils can be developed effectively by combining those three nonthermal EOR techniques. In this dissertation, lab experiments have been conducted to investigate the potential of the proposed hybrid nonthermal EOR techniques, including HSW (high salinity water)-LSW-softened LSW flooding, HSW-LSW-LSP flooding, CO2-enriched LHS (light hydrocarbon solvent)-alternating-LSW flooding, LHS-alternating-LSW flooding, CO2-enriched LHS (light hydrocarbon solvent)-alternating-LSP flooding, and LHS-alternating-LSP flooding, to improve ANS viscous oil recovery. Besides, the effect of essential clay minerals, including sodium-based montmorillonite (Na-Mt), calcium-based montmorillonite (Ca-Mt), illite, and kaolinite, on LSW flooding has been examined. In addition, the CO2 influence on solvent-alternating-LSP flooding in enhancing ANS viscous oil recovery has been investigated. Furthermore, the blockage issue during CO2-enriched LHS-alternating-LSP flooding has been investigated, and its solution has been proposed and analyzed. The EOR potential of the proposed hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, relative permeability, swelling property, zeta potential, interfacial tension (IFT), and pressure-volume-temperature (PVT) tests have been conducted to reveal the EOR mechanisms of the proposed hybrid EOR techniques. Moreover, water ion analysis of DI-water/natural-sand and DI-water/natural-sand/CO2 systems has been carried out to reveal the complex reaction between CO2, sand, and LSP solution. It was found that, compared to conventional waterflooding, all the proposed hybrid EOR techniques could result in better oil recovery potential. It was noticed that the presence of CO2 in LHS could be more beneficial to the solvent-alternating-LSW/LSP flooding processes during the 1st cycle due to the greater effectiveness of oil viscosity reduction. In particular, severe blockage issue occurred when conducting CO2-enriched LHS-alternating-LSP flooding using sand pack due to the polymer precipitation. Additionally, the calculated water relative permeabilities are much lower than the typical values, implying more complex interactions between the reservoir rock, heavy oil, and injected water. Moreover, comparing to HSW, LSW could further swell Na-Mt significantly, which may benefit LSW flooding by improving sweep efficiency since in-situ swelling of Na-Mt has the potential to block the higher permeable water-flooded zone and divert the injected brine to lower permeable and unswept area. Comparing to Na-Mt, LSW couldn’t swell Ca-Mt and illite further, whereas kaolinite was incapable of swelling in both HSW and LSW. Furthermore, about 60 mole% of solvent could be dissolved into the ANS viscous oil at target reservoir condition, resulting in oil swelling and viscosity reduction effects, which provided better microscopic displacement efficiency. Although the presence of CO2 in LHS had a negative impact on the oil swelling effect, the influence on the oil viscosity reduction was positive. In addition, reducing the salinity of water could generate more negative zeta potential values on the surface of clay minerals and sand, making it more water wet. Besides, IFT of oil/LSW system is higher than that of oil/HSW system, indicating that IFT reduction is not an EOR mechanism of LSW flooding in our proposed hybrid EOR techniques. Additionally, after introducing CO2 to the DIwater/natural-sand system, the concentration of multivalent cations was increased, which may be responsible for the polymer precipitation. The blockage issue could be solved by injecting LSW as a spacer between CO2-enriched LHS injection and LSP injection.

Book Low Salinity Water Alternate Gas Injection Process for Alaskan Viscous Oil EOR

Download or read book Low Salinity Water Alternate Gas Injection Process for Alaskan Viscous Oil EOR written by Kushagra Saxena and published by . This book was released on 2017 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide has excellent oil swelling and viscosity reducing characteristics. CO2 injection alternated with water has shown substantial incremental recovery over waterflood for the Alaska North Slope (ANS) viscous oil reservoirs. However, for any project, the ultimate CO2 slug size is finite and once the apportioned solvent volume is used up, the reservoir oil rates gradually revert to the low waterflood rates during the later life of a field. Low salinity waterflooding (LSWF) has also shown some promise based on corefloods and single well tracer tests in North Slope light oil reservoirs. However, two challenges impede its implementation as a standalone enhanced oil recovery (EOR) option on the North Slope: 1) slow response; the delay prolonged with increasing oil viscosity and 2) large upfront investments for the processing and transport of source water. This study proposes a hybrid EOR scheme, the low salinity water alternate gas (LSWAG) process, for the viscous fields of the ANS. The process was modeled by coupling geochemical and ion exchange reactions to a CO2-WAG type pattern model of the Schrader Bluff O sand. The Schrader Bluff reservoir has been classified suitable for low salinity EOR based on its permeability, temperature, clay content, and oil and formation water properties. Oil recovery through wettability alteration was modeled through ion exchange at the clay sites. Multiphase compositional flow simulation was run using numerical dispersion control. LSWAG forecast for 50 years following 36 years of high salinity waterflood recovered 15% OOIP more oil over high salinity waterflood and 4% incremental over high salinity WAG. This translates to an improvement of 58% and 11% over waterflood and conventional WAG respectively. Higher oil rates were observed during later life due to increased oil relative permeability caused by the low salinity mechanism. Furthermore, very low solvent utilization values were seen for LSWAG which can be tied to the higher ultimate oil recovery potential of using low salinity water over conventional waterflood. In summary, LSWAG outperformed LSWF and conventional WAG by synthesizing the oil swelling and viscosity reduction advantages of CO2 with lower residual oil benefits of LSWF, while overcoming the challenges of the late response of LSWF and low waterflood oil rates during later life in a conventional WAG flood.

Book Low Salinity Cyclic Water Injection for Enhanced Oil Recovery in Alaska North Slope

Download or read book Low Salinity Cyclic Water Injection for Enhanced Oil Recovery in Alaska North Slope written by Sathish S. Kulathu and published by . This book was released on 2009 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Properties and flow pattern of injected water have an impact on properties like rock wettability and oil saturation. Researchers have observed increased oil recovery with low salinity brines and reduced water production with cyclic injection. Low salinity cyclic water injection is an interesting combination to be evaluated for further implementation. Two-phase water-oil flow experiments were conducted on cleaned and oil-aged sandstone cores in a core holder apparatus. At connate water saturation, modified Amott-Harvey tests were performed to study wettability. Cyclic waterfloods were conducted to recover oil. Residual oil saturation (Sor) was calculated after every step. The experiments were repeated with reconstituted brines of different salinity and Alaska North Slope (ANS) lake water. The effect of low salinity waterfloods and oil-aging on wettability alteration was studied. The results were compared with available data from conventional floods performed on the same cores. Cyclic floods were also tested for different pulse intervals. Conventional waterflooding was conducted on recombined oil-saturated cores at reservoir conditions. Faster reduction in Sor and additional oil recovery was observed consistently with low salinity cyclic injection. Oil-aging reduced water wetness of cores. Subsequent low salinity floods restored the water wetness marginally. Shorter pulses yielded better results than longer intervals"--Leaf iii.

Book Enhanced Oil Recovery Processes

Download or read book Enhanced Oil Recovery Processes written by Ariffin Samsuri and published by BoD – Books on Demand. This book was released on 2019-12-18 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with production decline, shortages of new oil reserves, and increasing world energy demand, the oil sector continues to search for economic and efficient techniques to enhance their oil recovery from the existing oil field using several enhanced oil recovery techniques (EOR)methods. Despite its highefficiency, widely acclaimed potentials, and limitations, the Low Salinity Water Flooding (LSWF), hybrid, and nanotechnology applications have gained vast interest with promising future to increase ultimate oil recovery, tackle operational challenges, reduce environmental damage, and allow the highest feasible recoveries with lower production costs. This synergistic combination has opened new routes for novel materials with fascinating properties. This book aims to provide an overview of EOR technology such as LSWF, hybrid, and nanotechnology applications in EOR processes.

Book Alkali surfactant polymer  ASP  Flooding   Potential and Simulation for Alaskan North Slope Reservoir

Download or read book Alkali surfactant polymer ASP Flooding Potential and Simulation for Alaskan North Slope Reservoir written by Tejas S. Ghorpade and published by . This book was released on 2014 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced oil recovery (EOR) is essential to recover bypassed oil and improve recovery factor. Alkaline-surfactant-polymer (ASP) flooding is a chemical EOR method that can be used to recover heavy oil containing organic acids from sandstone formations. It involves injection of alkali to generate in situ surfactants, improve sweep efficiency, and reduce interfacial tension (IFT) between displacing and displaced phase, and injection of a polymer to improve mobility ratio; typically, it is followed by extended waterflooding. The concentration of alkali, surfactant, and polymer used in the process depends on oil type, salinity of solution, pressure, temperature of the reservoir, and injection water quality. This project evaluates the effect of waterflooding on recovery, calculates the recovery factor for ASP flooding, and optimum concentration of alkali, surfactant, and polymer for an Alaskan reservoir. Also, the effects of waterflooding and improvement with ASP flooding are evaluated and compared. Studies of these effects on oil recovery were analyzed with a Computer Modeling Group (CMG)-generated model for the Alaskan North Slope (ANS) reservoir. Based on a literature review and screening criteria, the Western North Slope (WNS) 1 reservoir was selected for the ASP process. A CMG - WinProp simulator was used to create a fluid model and regression was carried out with the help of actual field data. The CMG - WinProp model was prepared with a 5 spot well injection pattern using the CMG STARS simulator. Simulation runs conducted for primary and waterflooding processes showed that the recovery factor increased from 3% due to primary recovery to 45% due to waterflooding at 500 psi drawdown for 60 years with a constant producing gas oil ratio (GOR). ASP flooding was conducted to increase recovery further, and optimum ASP parameters were calculated for maximum recovery. Also, effect of alkali, surfactant and polymer on recovery was observed and compared with ASP flood. If proved effective, the use of ASP chemicals for ANS reservoirs to increase the recovery factor could replace current miscible gas injection with chemical EOR. It will help to develop chemical flooding processes for heavier crude oil produced in harsh environments and create new horizons for chemical industries in Alaska.

Book Enhanced Oil Recovery

    Book Details:
  • Author : Ajay Mandal
  • Publisher : CRC Press
  • Release : 2023-11-29
  • ISBN : 1000998118
  • Pages : 346 pages

Download or read book Enhanced Oil Recovery written by Ajay Mandal and published by CRC Press. This book was released on 2023-11-29 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil recovery efficiency can be increased by applying the enhanced oil recovery (EOR) processes, which are based on the improvement of mobility ratio, reduction of interfacial tension between oil and water, wettability alteration, reduction of oil viscosity, formation of oil banks, and so forth. This book describes the different EOR methods and their mechanisms, which are traditionally used after conventional primary and secondary processes. The present scenario of different EOR processes, at both the field application stage and research stage, is also covered. Further, it discusses some of the recent advances in EOR processes such as low-salinity water flooding, the application of nanotechnology in EOR, microbial EOR, carbonated water injection, etc. Features: Comprehensive coverage of all enhanced oil recovery (EOR) methods Discussion of reservoir rock and fluid characteristics Illustration of steps in design and field implementation as well as the screening criteria for process selection Coverage of novel topics of nanotechnology in EOR and hybrid EOR method and low-salinity waterfloods Emphasis on recent technologies, feasibility, and implementation of hybrid technologies This book is aimed at graduate students, professionals, researchers, chemists, and personnel involved in petroleum engineering, chemical engineering, surfactant manufacturing, polymer manufacturing, oil/gas service companies, and carbon capture and utilization.

Book Mechanistic Modeling of Low Salinity Water Injection

Download or read book Mechanistic Modeling of Low Salinity Water Injection written by Aboulghasem Kazemi Nia Korrani and published by . This book was released on 2014 with total page 1262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low salinity waterflooding is an emerging enhanced oil recovery (EOR) technique in which the salinity of the injected water is substantially reduced to improve oil recovery over conventional higher salinity waterflooding. Although there are many low salinity experimental results reported in the literature, publications on modeling this process are rare. While there remains some debate about the mechanisms of low salinity waterflooding, the geochemical reactions that control the wetting of crude oil on the rock are likely to be central to a detailed description of the process. Since no comprehensive geochemical-based modeling has been applied in this area, we decided to couple a state-of-the-art geochemical package, IPhreeqc, developed by the United States Geological Survey (USGS) with UTCOMP, the compositional reservoir simulator developed at the Center for Petroleum and Geosystems Engineering in The University of Texas at Austin. A step-by-step algorithm is presented for integrating IPhreeqc with UTCOMP. Through this coupling, we are able to simulate homogeneous and heterogeneous (mineral dissolution/precipitation), irreversible, and ion-exchange reactions under non-isothermal, non-isobaric and both local-equilibrium and kinetic conditions. Consistent with the literature, there are significant effects of water-soluble hydrocarbon components (e.g., CO2, CH4, and acidic/basic components of the crude) on buffering the aqueous pH and more generally, on the crude oil, brine, and rock reactions. Thermodynamic constrains are used to explicitly include the effect of these water-soluble hydrocarbon components. Hence, this combines the geochemical power of IPhreeqc with the important aspects of hydrocarbon flow and compositional effects to produce a robust, flexible, and accurate integrated tool capable of including the reactions needed to mechanistically model low salinity waterflooding. The geochemical module of UTCOMP-IPhreeqc is further parallelized to enable large scale reservoir simulation applications. We hypothesize that the total ionic strength of the solution is the controlling factor of the wettability alteration due to low salinity waterflooding in sandstone reservoirs. Hence, a model based on the interpolating relative permeability and capillary pressure as a function of total ionic strength is implemented in the UTCOMP-IPhreeqc simulator. We then use our integrated simulator to match and interpret a low salinity experiment published by Kozaki (2012) (conducted on the Berea sandstone core) and the field trial done by BP at the Endicott field (sandstone reservoir). On the other hand, we believe that during the modified salinity waterflooding in carbonate reservoirs, calcite is dissolved and it liberates the adsorbed oil from the surface; hence, fresh surface with the wettability towards more water-wet is created. Therefore, we model wettability to be dynamically altered as a function of calcite dissolution in UTCOMP-IPhreeqc. We then apply our integrated simulator to model not only the oil recovery but also the entire produced ion histories of a recently published coreflood by Chandrasekhar and Mohanty (2013) on a carbonate core. We also couple IPhreeqc with UTCHEM, an in-house research chemical flooding reservoir simulator developed at The University of Texas at Austin, for a mechanistic integrated simulator to model alkaline/surfactant/polymer (ASP) floods. UTCHEM has a comprehensive three phase (water, oil, microemulsion) flash calculation package for the mixture of surfactant and soap as a function of salinity, temperature, and co-solvent concentration. Similar to UTCOMP-IPhreeqc, we parallelize the geochemical module of UTCHEM-IPhreeqc. Finally, we show how apply the integrated tool, UTCHEM-IPhreeqc, to match three different reaction-related chemical flooding processes: ASP flooding in an acidic active crude oil, ASP flooding in a non-acidic crude oil, and alkaline/co-solvent/polymer (ACP) flooding.

Book Phase Behavior  Solid Organic Precipitation  and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

Download or read book Phase Behavior Solid Organic Precipitation and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

Book Modeling  Design  and Optimization of Low Salinity Waterflooding

Download or read book Modeling Design and Optimization of Low Salinity Waterflooding written by Cuong Dang and published by . This book was released on 2015-05-23 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Potential of Low Salinity Waterflooding Technology to Improve Oil Recovery

Download or read book Potential of Low Salinity Waterflooding Technology to Improve Oil Recovery written by Hisham Ben Mahmud and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-salinity waterflooding (LSWF) is a potential new method for enhanced oil recovery (EOR) in sandstone and carbonate rock formations. LSWF approach has gained an attention in the oil and gas industry due to its potential advantages over the conventional waterflooding and other chemical EOR technologies. The efficiency of waterflooding process is effected via reservoir and fluid parameters such as formation rock type, porosity, permeability, reservoir fluid saturation and distribution and optimum time of water injection. Combined effect of these factors can define the ultimate recovery of hydrocarbon. The main objective of this chapter is to review the mechanism of LSWF technique in improving oil recovery and the mechanism under which it operates. Various laboratory studies and few field applications of LSWF in recent years have been presented mainly at the lab scale. Also it will explore numerical modeling developments of this EOR approach.

Book Enhanced Oil Recovery Field Case Studies

Download or read book Enhanced Oil Recovery Field Case Studies written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2013-04-10 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhanced Oil Recovery Field Case Studies bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful enhanced oil recovery project lies in anticipating the differences between plans and the realities found in the field. This book aids that effort, providing valuable case studies from more than 250 EOR pilot and field applications in a variety of oil fields. The case studies cover practical problems, underlying theoretical and modeling methods, operational parameters, solutions and sensitivity studies, and performance optimization strategies, benefitting academicians and oil company practitioners alike. Strikes an ideal balance between theory and practice Focuses on practical problems, underlying theoretical and modeling methods, and operational parameters Designed for technical professionals, covering the fundamental as well as the advanced aspects of EOR

Book Chemical Enhanced Oil Recovery

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Book Core Analysis

Download or read book Core Analysis written by Colin McPhee and published by Elsevier. This book was released on 2015-12-10 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models. The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data. Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics

Book Hybrid Enhanced Oil Recovery Using Smart Waterflooding

Download or read book Hybrid Enhanced Oil Recovery Using Smart Waterflooding written by Kun Sang Lee and published by Gulf Professional Publishing. This book was released on 2019-04-03 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Using Smart Waterflooding explains the latest technologies used in the integration of low-salinity and smart waterflooding in other EOR processes to reduce risks attributed to numerous difficulties in existing technologies, also introducing the synergetic effects. Covering both lab and field work and the challenges ahead, the book delivers a cutting-edge product for today’s reservoir engineers. Explains how smart waterflooding is beneficial to each EOR process, such as miscible, chemical and thermal technologies Discusses the mechanics and modeling involved using geochemistry Provides extensive tools, such as reservoir simulations through experiments and field tests, establishing a bridge between theory and practice

Book Waterflooding

Download or read book Waterflooding written by G. Paul Willhite and published by . This book was released on 1986 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.

Book Recent Insights in Petroleum Science and Engineering

Download or read book Recent Insights in Petroleum Science and Engineering written by Mansoor Zoveidavianpoor and published by BoD – Books on Demand. This book was released on 2018-02-07 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new insights into the development of different aspects of petroleum science and engineering. The book contains 19 chapters divided into two main sections: (i) Exploration and Production and (ii) Environmental Solutions. There are 11 chapters in the first section, and the focus is on the topics related to exploration and production of oil and gas, such as characterization of petroleum source rocks, drilling technology, characterization of reservoir fluids, and enhanced oil recovery. In the second section, the special emphasis is on waste technologies and environmental cleanup in the downstream sector. The book written by numerous prominent scholars clearly shows the necessity of the multidisciplinary approach to sustainable development in the petroleum industry and stresses the most updated topics such as EOR and environmental cleanup of fossil fuel wastes.