EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanistic Studies and Applications of the Copper catalyzed Rearrangement of Vinyl Heterocycles

Download or read book Mechanistic Studies and Applications of the Copper catalyzed Rearrangement of Vinyl Heterocycles written by Daniel James Mack and published by . This book was released on 2013 with total page 890 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of new synthetic methods advances the study of chemistry on many fronts, including new drugs for the treatment of human disease and new materials. The copper-catalyzed rearrangement of vinyl heterocycles is one such method, providing access to a wide array of five-membered oxygen, nitrogen, and sulfur-containing heterocycles. To harness the true potential of a new methodology, an understanding of the mechanistic underpinnings is required. Utilizing an array of mechanistic tools, the rearrangement of vinyl aziridines is studied in detail. Using mechanistically inspired metal additives, a dramatic acceleration of the rearrangement of vinyl aziridines was realized. Demonstrating the use of in situ reducing agents significantly accelerate the rearrangement, suggesting a copper(I) species is the active catalytic species. This was corroborated through the use of (COD)Cu(hfacac) as a copper(I) starting point. Detailed NMR kinetic studies revealed the relative importance of olefin and sulfonamide electronics, and that the rearrangement is first order in substrate and first order in catalyst. As a result, a new catalytic system was discovered, which provides enhanced chemoselectivity and milder reaction conditions towards five-membered heterocycles. In addition, studying the mechanism provided a new direction for future rational catalyst designs towards more active catalysts, and catalysts for chiral applications, such as asymmetric desymmetrization. To further demonstrate the utility of the new copper(I) catalytic system, an expedient and scalable approach was designed utilizing (COD)Cu(hfacac) in the first total synthesis of members of a family of heterocyclic labdane natural products. Through synthesis, conformation and clarification of the structural assignment of isolated smallmolecules was realized. The route provided access to quantities of material for biological screening purposes, and the versatility of the route could be used to provide synthetic analogues of the natural structures.

Book Copper in N Heterocyclic Chemistry

Download or read book Copper in N Heterocyclic Chemistry written by Ananya Srivastava and published by Elsevier. This book was released on 2020-11-13 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Copper in N-Heterocyclic Chemistry provides an overview of copper-catalyzed synthesis and functionalization of N-heterocyclic compounds, covering all recent developments in a way that is ideal for researchers and students working in the area of synthetic organic chemistry and medicinal chemistry. The book explores N-heterocyclic compounds as unique structural units in the development of natural products and pharmaceuticals, along with the remarkable progress made in the area of high atom economic strategies, and more recently, copper-catalyzed C-H activation and its applications in organic synthesis. Readers will find troubleshooting protocols, as well as the advantages and limitations of each method discussed. As copper catalysts show versatile chemical reactivity in many aspects, including their oxidation states 0–3 are accessible and their ability to facilitate bond formations due to their ability to serve as Lewis acids, oxidizing agents and catalysts, this book is an ideal resource on the topics explored. Discusses novel synthetic methods developed over the past decade for copper-catalyzed synthesis of N-heterocyclic compounds Covers the most recent methodologies adapted in synthetic chemistry for applications in natural products and pharmaceuticals Includes troubleshooting protocols, as well as the advantages and limitations of each method discussed in detail

Book Oxidative Cross Coupling Reactions

Download or read book Oxidative Cross Coupling Reactions written by Aiwen Lei and published by John Wiley & Sons. This book was released on 2016-08-12 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first handbook on this emerging field provides a comprehensive overview of transition metal-catalyzed coupling reactions in the presence of an oxidant. Following an introduction to the general concept and mechanism of this reaction class, the team of authors presents chapters on C-C cross-coupling reactions using organometallic partners, C-Heteroatom bond forming reactions via oxidative couplings, and C-H couplings via C-H activation. The text also covers such groundbreaking topics as recent achievements in the fields of C-C and C-X bond formation reactions as well as C-H activation involving oxidative couplings. With its novel and concise approach towards important building blocks in organic chemistry and its focus on synthetic applications, this handbook is of great interest to all synthetic chemists in academia and industry alike.

Book New Fundamental Transformations of Heterocyclic Compounds Enabled by Copper Catalysis

Download or read book New Fundamental Transformations of Heterocyclic Compounds Enabled by Copper Catalysis written by Michael William Gribble (Jr.) and published by . This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter One. Introduction to Catalytic C–C−Bond−Forming Reactions of Alkylcopper(I) Nucleophiles This chapter provides a brief historical perspective on the development of Cucatalyzed C–C−bond-forming reactions and an overview of the general facets of organocopper reactivity that are most important to the work documented in subsequent chapters. Chapter Two: Asymmetric Copper-Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles Copper hydride complexes catalyze highly enantioselective Markovnikov hydrosilylation of vinylarenes and vinyl heterocycles. This method has a broad scope and enables both the synthesis of isolable silanes and the conversion of crude products to chiral alcohols. DFT calculations support a mechanism proceeding by hydrocupration followed by !-bond metathesis with a hydrosilane. Chapter Three: Asymmetric Cu-Catalyzed 1,4−Dearomatization of Pyridines and Pyridazines without Preactivation of the Heterocycle or Nucleophile. A chiral copper hydride complex catalyzes C-C bond-forming dearomatization of pyridines and pyridazines at room temperature. The catalytic reaction operates directly on free heterocycles and generates the nucleophiles in situ, eliminating the need for stoichiometric preactivation of either reaction partner; further, it is one of very few methods available for the enantioselective 1,4−dearomatization of heteroarenes. Combining the dearomatization with facile derivatization steps enables one-pot syntheses of enantioenriched pyridines and piperidines. Chapter Four: Evidence for Simultaneous Dearomatization of Two Arenes Under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine Bis(phosphine) copper hydride complexes are uniquely able to catalyze the direct dearomatization of unactivated pyridines with carbon nucleophiles, but the mechanistic basis for this result has been unclear. Here we show that, contrary to our initial hypotheses, the catalytic mechanism is monometallic and proceeds via dearomative rearrangement of the phenethylcopper nucleophile to a Cparametalated form prior to reaction at heterocycle C4. Our studies support an unexpected heterocycle-promoted pathway for this net 1,5−Cu−migration beginning with a doubly dearomative imidoyl-Cu-ene reaction. Kinetics, substituent effects, computational modeling, and spectroscopic studies support the involvement of this unusual process. The CuL2 fragment subsequently mediates a stepwise Cope rearrangement of the doubly dearomatized intermediate to give the C4− functionalized 1,4-dihydropyridine, lowering a second barrier in the pathway that otherwise prohibit efficient asymmetric catalysis.

Book Development and Applications of Copper I  Hydride Catalysis in Asymmetric Reactions and Heterocycle Synthesis

Download or read book Development and Applications of Copper I Hydride Catalysis in Asymmetric Reactions and Heterocycle Synthesis written by Yujing Zhou (Ph. D.) and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 2. Enantioselective CuH-Catalyzed Hydroacylation Employing Unsaturated Carboxylic Acids as Aldehyde Surrogates The direct asymmetric copper hydride (CuH)-catalyzed coupling of [alpha],[beta]-unsaturated carboxylic acids to aryl alkenes is developed to access chiral [alpha]-aryl dialkyl ketones. A variety of substrate substitution patterns, sensitive functional groups and heterocycles are tolerated in this reaction, which significantly expands the range of accessible products compared to existing hydroacylation methodology. Although mechanistic studies are ongoing, we propose that CuH-catalyzed silylation of unsaturated acids occurs to access a uniquely effective acyl electrophilic coupling partner. Chapter 3. CuH-Catalyzed Asymmetric Reduction of [alpha],[beta]-Unsaturated Carboxylic Acids to [beta]-Chiral Aldehydes The copper hydride (CuH)-catalyzed enantioselective reduction of [alpha],[beta]-unsaturated carboxylic acids to saturated aldehydes is reported. This protocol provides a new method to access a variety of [beta]-chiral aldehydes in good yields, with high levels of enantioselectivity and broad functional group tolerance. A reaction pathway involving a ketene intermediate is proposed based on preliminary mechanistic studies and density functional theory calculations. Chapter 4. CuH-Catalyzed Asymmetric Reductive Amidation of [alpha],[beta]-Unsaturated Carboxylic Acids The direct enantioselective copper hydride (CuH)-catalyzed synthesis of [beta]-chiral amides from [alpha],[beta]-unsaturated carboxylic acids and secondary amines under mild reaction conditions is reported. The method utilizes readily accessible carboxylic acids, and tolerates a variety of functional groups at [beta]-position including several heteroarenes. A subsequent iridium-catalyzed reduction to [gamma]-chiral amines can be performed in the same flask without purification of the intermediate amides. Chapter 5. CuH-Catalyzed Asymmetric Hydroamidation of Vinylarenes A CuH-catalyzed enantioselective hydroamidation reaction of vinylarenes has been developed using readily accessible 1,4,2-dioxazol-5-ones as electrophilic amidating reagents. This method provides a straightforward and efficient approach to synthesize chiral amides in good yields with high levels of enantiopurity under mild conditions. Moreover, this transformation tolerates substrates bearing a broad range of functional groups. Chapter 6. Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct Allene (C3H4) gas is produced and separated on million-metric-ton scale per year during petroleum refining but is rarely employed in organic synthesis. Meanwhile, the addition of an allyl group (C3H5) to ketones is among the most common and prototypical reactions in synthetic chemistry. Herein, we report that the combination of allene gas with inexpensive and environmentally benign hydrosilanes, such as PMHS, can serve as a replacement for stoichiometric quantities of allylmetal reagents, which are required in most enantioselective ketone allylation reactions. This process is catalyzed by copper catalyst and commercially available ligands, operates without specialized equipment or pressurization, and tolerates a broad range of functional groups. Furthermore, the exceptional chemoselectivity of this catalyst system enables industrially relevant C3 hydrocarbon mixtures of allene with methylacetylene and propylene to be applied directly. Based on our strategy, we anticipate the rapid development of methods that leverage this unexploited feedstock as an allyl anion surrogate. Chapter 7. Synthesis of Pyrroles through the CuH-Catalyzed Coupling of Enynes and Nitriles Herein, we describe an efficient method to prepare polysubstituted pyrroles via a copper-hydride (CuH)- catalyzed enyne-nitrile coupling reaction. This protocol accommodates both aromatic and aliphatic substituents and a broad range of functional groups, providing a variety of N-H pyrroles in good yields and with high regioselectivity. We propose that the Cu-based catalyst promotes both the initial reductive coupling and subsequent cyclization steps. Density functional theory (DFT) calculations were performed to help elucidate the reaction mechanism.

Book Economic Synthesis of Heterocycles

Download or read book Economic Synthesis of Heterocycles written by Xiao-Feng Wu and published by Royal Society of Chemistry. This book was released on 2014-05-21 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterocycle synthesis is one of the largest areas of modern organic chemistry. Heterocycles have a broad range of applications including pharmaceuticals, agrochemicals and dyes, and are the core structure to around 90% of naturally-occurring molecules. Transition metal catalysts have become favoured in heterocycle synthesis, not least because of their low cost, but also due to their relatively low environmental toxicity and biocompatibility. This book presents an overview of the state-of-the-art in transition metal catalysis for heterocycle synthesis. Each metal is discussed in turn, presenting a comprehensive source of information on the use of zinc, iron, copper, cobalt, manganese, and nickel in a sustainable and economic manner. Referencing the latest primary literature, and authored by active researchers in the field, this book is a must-have resource for anyone wishing to undertake an economic and sustainable approach to heterocycle synthesis.

Book Heterocycles from Carbenes and Nitrenes

Download or read book Heterocycles from Carbenes and Nitrenes written by Michael P. Doyle and published by Springer Nature. This book was released on 2023-08-09 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides researchers in the fields of organic chemistry, organometallic chemistry and homogeneous catalysis with an overview of recent developments in the applications of reactions involving carbene and nitrene intermediates directed to the synthesis of heterocyclic compounds. Multiple pathways through which diverse heterocyclic compounds are accessed occur from a variety of carbene and nitrene precursors through C-H/X-H insertions, cycloadditions, ylide transformations, rearrangements, and cascade reactions. Catalytic processes that form metallo-carbenes and nitrenes offer unparalleled chemo-, regio-, and stereo-selectivities. Insights are provided into the scope of these methodologies and the inherent control of catalyst ligands on reaction selectivities.

Book Mechanistic Studies of Copper catalyzed Transformations

Download or read book Mechanistic Studies of Copper catalyzed Transformations written by Amanda Elisabeth King and published by . This book was released on 2009 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heterogeneous Catalysis

    Book Details:
  • Author : K.L. Ameta, Ph.D.
  • Publisher : CRC Press
  • Release : 2014-09-13
  • ISBN : 1466594829
  • Pages : 360 pages

Download or read book Heterogeneous Catalysis written by K.L. Ameta, Ph.D. and published by CRC Press. This book was released on 2014-09-13 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than a century, bioactive heterocycles have formed one of the largest areas of research in organic chemistry. They are important from a biological and industrial point of view as well as to the understanding of life processes and efforts to improve the quality of life. Heterogeneous Catalysis: A Versatile Tool for the Synthesis of Bioactive Heterocycles highlights the recent methodologies used in the synthesis of such bioactive systems and focuses on the role of heterogeneous catalysis in the design and synthesis of various biologically active heterocyclic compounds of pharmacological interest. Topics include: Synthetic protocols for the construction of heterocyclic systems employing silica-bound catalysts Recent advances in heterogeneous copper-catalyzed reactions for the synthesis of bioactive heterocycles Features of silica-based heterogeneous catalysts, such as abundance, ease of use, and stability Ultrasound as an effective tool for accelerating reactions Organic transformations catalyzed by nano-ZnO as a valuable heterogeneous catalyst Heterogeneous catalysts employed in the synthesis of coumarins Heterocyclizations in the presence of silver salts Home-made organometallic silica sources, known as silatranes Reflecting the focused studies currently conducted in these areas, the book also examines anticancer, antifungal, antibacterial, anti-HIV, anti-inflammatory, antioxidant, and many more biological activities of heterocyclic compounds. It is essential reading for postgraduate and research scholars in the fields of biochemistry, chemical biology, medicinal chemistry and pharmaceutical chemistry.

Book Handbook of Organopalladium Chemistry for Organic Synthesis

Download or read book Handbook of Organopalladium Chemistry for Organic Synthesis written by Ei-ichi Negishi and published by John Wiley & Sons. This book was released on 2003-11-24 with total page 1657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organized to provide maximum utility to the bench synthetic chemist. The editor is well-known for his work in exploring, developing, and applying organopalladium chemistry. Contributors include over 24 world authorities in the field.

Book N Sulfonated N Heterocycles

Download or read book N Sulfonated N Heterocycles written by Galal H. Elgemeie and published by Elsevier. This book was released on 2022-08-30 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: N-Sulfonated-N-Heterocycles covers the synthesis, chemistry and biological applications of these compounds, focusing on pioneering synthetic approaches, mechanistic insights and their limitations, as well as recent advances in this field. The synthesis of some of N-sulfonated N-heterocycles and their transformation to other useful cyclic and acyclic compounds are discussed, as well as their uses as useful intermediates in the preparation of polymeric and medicinal materials. This book includes detailed methods and protocols, and the focus on applications makes this resource an essential guide for all researchers in the area of organic, medicinal and polymeric synthetic study. Reviews the use of N-sulfonated N-heterocycles as important precursors for the synthesis of biologically active compounds Includes information on synthetically useful transformations of N-sulfonated N-heterocycles Covers a wide synthetic methods used for an important branch of heterocycles and their biological evaluation in detail Features over 500 schemes to illustrate different synthetic pathways and reactions of N-sulfonated N-heterocycles

Book New Reactivity and Selectivity in Transition Metal catalyzed C C and C N Bond Forming Processes

Download or read book New Reactivity and Selectivity in Transition Metal catalyzed C C and C N Bond Forming Processes written by and published by . This book was released on 2015 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I. Palladium-Catalyzed Carbon-Carbon Bond Forming Cross-Couplings Chapter 1. Ligand-Controlled Palladium-Catalyzed Regiodivergent Suzuki-Miyaura Cross-Coupling of Allylboronates and Aryl Halides An orthogonal set of catalyst systems based on the use of two biarylphosphine ligands has been developed for the Suzuki-Miyaura coupling of 3,3-disubstituted and 3-monosubstituted allylboronates with (hetero)aryl halides. These methods allow for the regiodivergent preparation of either the ct- or the [gamma]-isomeric coupling product with high levels of site selectivity using a common allylboron building block. Preliminary investigations have demonstrated the feasibility of an enantioselective variant for the [gamma]-selective cross-coupling using chiral monodentate biarylphosphine ligands. Chapter 2. Palladium-Catalyzed Completely Linear-Selective Negishi Coupling of 3,3-Disubstituted Organozinc Reagents with Aryl and Vinyl Electrophiles A palladium-catalyzed general and completely linear-selective Negishi coupling of 3,3- disubstituted allyl organozinc reagents with (hetero)aryl and vinyl electrophiles has been developed. This method provided an effective means for accessing highly functionalized aromatic and heteroaromatic compounds bearing prenyl-type side chains. The utility of the current protocol was further illustrated in the concise synthesis of the anti-HIV natural product siamenol. Chapter 3. Palladium-Catalyzed Highly Selective Negishi Cross-Coupling of Secondary Alkylzinc Reagents with Aryl and Heteroaryl Halides The palladium-catalyzed Negishi cross-coupling of secondary alkylzinc reagents and heteroaryl halides with high levels of regioisomeric retention has been described. The development of a series of biarylphosphine ligands has led to the identification of an improved catalyst for the coupling of electron-deficient heterocyclic substrates. Preparation and characterization of oxidative addition complex (L)Pd(Ar)(Br) provided insight into the unique reactivity of palladium catalysts based on CPhos-type biarylphosphine ligands in facilitating challenging reductive elimination processes. Chapter 4. Mechanistic Studies on the Aryl-Trifluoromethyl Reductive Elimination from Pd(II) Complexes Based on Biarylphosphine Ligands A series of monoligated (L)Pd(Ar)(CF3) (L = dialkyl biarylphosphine) have been prepared and studied in an effort to shed light on the mechanism of the aryl-trifluoromethyl reductive elimination from these systems. Combined experimental and computational investigations revealed unique reactivity and binding modes of (L)Pd(Ar)(CF3) complexes derived from BrettPhos-type biarylphosphines. In contrast to a variety of C-C and C-heteroatom bond forming reductive eliminations, kinetic measurements showed this Ar-CF3 reductive elimination is largely insensitive to the electronic nature of the to-be-eliminated aryl substituent. Furthermore, the aryl group serves as the nucleophilic coupling partner in this reductive elimination process. The structure-reactivity relationship of biarylphosphine ligands was also investigated, uncovering distinct roles of the ipso-arene and alkoxy interactions in affecting these reductive elimination reactions. Part II. Copper-Catalyzed Carbon-Carbon and Carbon-Nitrogen Bond Formation via Olefin Functionalization Chapter 5. Copper-Catalyzed ortho C-H Cyanation of Vinylarenes A copper-catalyzed regioselective ortho C-H cyanation of vinylarenes has been developed. This method provides an effective means for the selective functionalization of vinylarene derivatives. A copper-catalyzed cyanative dearomatization mechanism is proposed to account for the regiochemical course of this reaction. This mechanism has been validated through density functional theory calculations. Computational studies revealed that the high level of ortho selectivity in the electrophilic cyanation event originates from a unique six-membered transition state that minimizes unfavorable steric repulsions. Chapter 6. Regio- and Stereospecific 1,3-Allyl Group Transfer Triggered by a Copper-Catalyzed Borylation/ortho-Cyanation Cascade A copper-catalyzed borylation/cyanation/allyl group transfer cascade has been developed. This process features an unconventional copper-catalyzed electrophilic dearomatization followed by the subsequent regio- and stereospecific 1,3-transposition of the allyl fragment enabled by the aromatization-driven Cope rearrangement. This method provides an effective means for the construction of adjacent tertiary and quaternary stereocenters with high levels of stereochemical purity. Chapter 7. Copper-Catalyzed Asymmetric Hydroamination of Unactivated Internal Olefins: an Effective Means to Access Highly Enantioenriched Aliphatic Amines Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. We describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins-an important yet unexploited class of abundant feedstock chemicals-into highly enantioenriched [alpha]-branched amines (>/= 96% ee) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.

Book Visible Light Photocatalysis in Organic Chemistry

Download or read book Visible Light Photocatalysis in Organic Chemistry written by Corey R.J. Stephenson and published by John Wiley & Sons. This book was released on 2018-05-29 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the need for a ready reference that reflects the vast developments in this field, this book presents everything from fundamentals, applications, various reaction types, and technical applications. Edited by rising stars in the scientific community, the text focuses solely on visible light photocatalysis in the context of organic chemistry. This primarily entails photoinduced electron transfer and energy transfer chemistry sensitized by polypyridyl complexes, yet also includes the use of organic dyes and heterogeneous catalysts. A valuable resource to the synthetic organic community, polymer and medicinal chemists, as well as industry professionals.

Book The Claisen Rearrangement

    Book Details:
  • Author : Martin Hiersemann
  • Publisher : John Wiley & Sons
  • Release : 2007-02-27
  • ISBN : 3527610553
  • Pages : 591 pages

Download or read book The Claisen Rearrangement written by Martin Hiersemann and published by John Wiley & Sons. This book was released on 2007-02-27 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive coverage of all facets of the Claisen rearrangement and its variants. As such, this book helps synthetic chemists to exploit the vast potential of this elegant C-C linking reaction, discusses a wealth of catalytic options, and gives those more theory-minded chemists a detailed insight into the mechanistic aspects of the Claisen rearrangement. An invaluable source of information and a ready reference for all organic and catalytic chemists, as well as those working with/on organometallics, and in industry.

Book Click Reactions in Organic Synthesis

Download or read book Click Reactions in Organic Synthesis written by Srinivasan Chandrasekaran and published by John Wiley & Sons. This book was released on 2016-09-13 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Endlich ein Buch zu Click-Reaktionen mit Schwerpunkt auf der organischen Synthese. Beschrieben werden das Click-Konzept, die zugrunde liegenden Mechanismen und Hauptanwendungsgebiete. NÜTZLICH: Die Click-Chemie ist ein wirkungsvoller Ansatz, um auf einfache Weise komplexe organische Moleküle aus verfügbaren Ausgangsmaterialien zu erzeugen ? der Traum jedes Organikers. EINZIGARTIGER SCHWERPUNKT: Aufgrund des besonderen Schwerpunkts auf der organischen Synthese ist dieses Buch für jeden Synthesechemiker von hohem Interesse. HILFREICH: Click-Reaktionen sind stereospezifisch, einfach durchzuführen, hoch ergiebig und lassen sich in einfach zu entfernenden oder nicht schädlichen Lösungsmitteln durchführen. INTERDISZIPLINÄR: Das Click-Konzept ist bei der Herstellung natürlicher Produkte, bioaktiver Verbindungen, von Kohlenhydraten, Arzneimitteln, Polymeren, supramolekularer Strukturen und Materialien weit verbreitet.

Book Copper Catalysis in Organic Synthesis

Download or read book Copper Catalysis in Organic Synthesis written by Gopinathan Anilkumar and published by John Wiley & Sons. This book was released on 2020-12-07 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most current information on growing field of copper catalysis Copper Catalysis in Organic Synthesis contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions. Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book: Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industry Offers the first up-to-date book to explore copper as a first line catalyst for many organic reactions Presents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocycles Contains over 20 contributions from leaders in the field Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry, Copper Catalysis in Organic Synthesis offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.