Download or read book Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites written by Wim Van Paepegem and published by Woodhead Publishing. This book was released on 2020-11-25 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Download or read book Collected Papers of R S Rivlin written by Grigory I. Barenblatt and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 2868 pages. Available in PDF, EPUB and Kindle. Book excerpt: R.S. Rivlin is one of the principal architects of nonlinear continuum mechanics: His work on the mechanics of rubber (in the 1940s and 50s) established the basis of finite elasticity theory. These volumes make most of his scientific papers available again and show the full scope and significance of his contributions.
Download or read book Composite Reinforcements for Optimum Performance written by Philippe Boisse and published by Woodhead Publishing. This book was released on 2020-10-22 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite Reinforcements for Optimum Performance, Second Edition, has been brought fully up to date with the latest developments in the field. It reviews the materials, properties and modelling techniques used in composite production and highlights their uses in optimizing performance. Part I covers materials for reinforcements in composites, including chapters on fibers, carbon nanotubes and ceramics as reinforcement materials. In Part II, different types of structures for reinforcements are discussed, with chapters covering woven and braided reinforcements, three-dimensional fibre structures and two methods of modelling the geometry of textile reinforcements: WiseTex and TexGen. Part III focuses on the properties of composite reinforcements, with chapters on topics such as in-plane shear properties, transverse compression, bending and permeability properties. Finally, Part IV covers the characterization and modelling of reinforcements in composites, with chapters focusing on microscopic and mesoscopic approaches, X-ray tomography analysis and modelling reinforcement forming processes. With its distinguished editor and international team of contributors, Composite Reinforcements for Optimum Performance, Second Edition, is an essential reference for designers and engineers working in the composite and composite reinforcement manufacturing industry, as well as all those with an academic research interest in the subject. - Discusses the characterization and modeling of reinforcements in composites, focusing on such topics as microscopic and mesoscopic approaches, X-ray tomography analysis, and modeling reinforcement forming processes - Provides comprehensive coverage of the types and properties of reinforcement in composites, along with their production and performance optimization - Includes sections on NCF (non-crimp fabrics), natural fiber reinforcements, tufting composite reinforcements, sustainability, multiscale modeling, knitted reinforcements, and more
Download or read book Stress Analysis of Fiber reinforced Composite Materials written by M. W. Hyer and published by DEStech Publications, Inc. This book was released on 2009 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.
Download or read book Frontiers In Applied Mechanics written by Zishun Liu and published by World Scientific. This book was released on 2014-11-20 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frontiers in Applied Mechanics is a compilation of cutting-edge research in applied mechanics by 65 of the world's leading researchers and academics. It comprises current new research directions and topics in the field, as well as developments in the classical branches of applied mechanics; namely solid mechanics, fluid mechanics, thermodynamics, and materials science. Frontiers in Applied Mechanics also includes contributions from new emerging areas such as nanomechanics, biomechanics, electromechanics, the mechanical behavior of advanced materials, mechanics of soft materials, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed. The mathematical modeling and methodology for applied mechanics are also included, with applications to many interesting mechanics aspects. All articles were carefully selected following a thorough review process by peers.The aim of this collection is to contribute to knowledge in all aspects of applied mechanics; to improve the reader's understanding of the topics and aid their corresponding advances in the field. Readers may also use the contents as a guide for future research directions.
Download or read book Modelling and Predicting Textile Behaviour written by Xiaogang Chen and published by Elsevier. This book was released on 2009-11-30 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The textile industry can experience a vast array of problems. Modelling represents a group of techniques that have been widely used to explore the nature of these problems, it can highlight the mechanisms involved and lead to predictions of the textile behaviour. This book provides an overview of how textile modelling techniques can be used successfully within the textile industry for solving various problems.The first group of chapters reviews the different types of models and methods available for predicting textile structures and behaviour. Chapters include modelling of yarn, woven and nonwoven materials. The second group of chapters presents a selection of case studies, expressing the strengths and limitations and how various models are applied in specific applications. Case studies such as modelling colour properties for textiles and modelling, simulation and control of textile dyeing are discussed.With its distinguished editor and international range of contributors, Modelling and predicting textile behaviour is essential reading material for textile technologists, fibre scientists and textile engineers. It will also be beneficial for academics researching this important area. - Provides an overview of the different types of models and methods that can be used successfully within the textile industry - Reviews the structural hierarchy in textile materials fundamental to the modelling of textile fibrous structures - Assesses the strengths and weaknesses of different textile models and how specific models are applied in different situations
Download or read book Woven Fabric Engineering written by Polona Dobnik Dubrovski and published by BoD – Books on Demand. This book was released on 2010-11-18 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal in preparing this book was to publish contemporary concepts, new discoveries and innovative ideas in the field of woven fabric engineering, predominantly for the technical applications, as well as in the field of production engineering and to stress some problems connected with the use of woven fabrics in composites. The advantage of the book Woven Fabric Engineering is its open access fully searchable by anyone anywhere, and in this way it provides the forum for dissemination and exchange of the latest scientific information on theoretical as well as applied areas of knowledge in the field of woven fabric engineering. It is strongly recommended for all those who are connected with woven fabrics, for industrial engineers, researchers and graduate students.
Download or read book Woven Composites written by M H Ferri Aliabadi and published by World Scientific. This book was released on 2015-02-09 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the latest developments in the field of advanced woven and braided textile composites, with particular emphasis on computational approaches (finite elements, meshfree). Advanced textile composites such as woven, braided, knitted and stitched fabrics are increasingly being used as structural materials in industrial applications due to their efficiency at reinforcing more directions within a single layer and their ability to conform to surfaces with complex curvatures. Furthermore, textile composites provide improved impact resistance, exceptional thermal, fatigue and corrosion resistance, as well as being easier and cheaper to handle and fabricate compared to UD composites.Topics covered in this book include: 2D and 3D plain, twill, satin woven and braided composites, micro-level and macro-level modelling, failure mechanisms, theoretical studies on cryogenic crack behaviour and the specific deformation modes of textile reinforcements, which include the kinematic and hypoelastic models.This book will be particularly relevant to professional engineers, graduate students and researchers interested in composite materials.
Download or read book Mechanics of Fiber and Textile Reinforced Cement Composites written by Barzin Mobasher and published by CRC Press. This book was released on 2011-09-20 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all building materials, concrete is the most commonly used—and there is a staggering demand for it. However, as we strive to build taller structures with improved seismic resistance or durable pavement with an indefinite service life, we require materials with better performance than the conventional materials used today. Considering the enormous investment in public infrastructure and society’s need to sustain it, the need for new and innovative materials for the repair and rehabilitation of civil infrastructure becomes more evident. These improved properties may be defined in terms of carbon footprint, life-cycle cost, durability, corrosion resistance, strength, ductility, and stiffness. Addressing recent trends and future directions, Mechanics of Fiber and Textile Reinforced Cement Composites presents new opportunities for developing innovative and cost-effective materials and techniques in cement and concrete composites manufacturing, testing, and design. The book offers mathematical models, experimental results, and computational algorithms for efficient designs with fiber and textile reinforced composite systems. It explores alternative solutions using blended cements, innovative reinforcing systems, natural fibers, experimental characterization of key parameters used for design, and optimized designs. Each chapter begins with a detailed introduction, supplies a thorough overview of the existing literature, and sets forth the reasoning behind the experimentation and theory. Documenting the composite action of fibers and textiles, the book develops and explains methods for manufacturing and testing cement composites. Methods to design and analyze structures for reduced weight, increased durability, and minimization of cement use are also examined. The book demonstrates that using a higher volume fraction of fiber systems can result in composites that are quasi-elastic plastic. Speaking to the need to optimize structural performance and sustainability in construction, this comprehensive and cohesive reference requires readers to rethink the traditional design and manufacturing of reinforced concrete structures.
Download or read book Design and Analysis of Reinforced Fiber Composites written by Pedro V. Marcal and published by Springer. This book was released on 2015-07-30 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.
Download or read book Simulation of the thermoforming process of UD fiber reinforced thermoplastic tape laminates written by Dörr, Dominik and published by KIT Scientific Publishing. This book was released on 2021-10-29 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, initially, the requirements on a simulation model of the non-isothermal stamp forming process of unidirectional fiber-reinforced, and thermoplastic tape laminates are investigated experimentally. On this basis, different isothermal as well as a fully coupled thermomechanical simulation model under consideration of the crystallization kinetics are developed. For validation, a complex shaped geometry is simulated and compared to experimental forming results.
Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling written by Naake, Dominik Robert and published by KIT Scientific Publishing. This book was released on 2020-09-18 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A weave reinforced composite material with a thermoplastic matrix is investigated by using a multiscale chain to predict the macroscopic material behavior. A large-strain framework for constitutive modeling with focus on material non-linearities, i.e. plasticity and damage is defined. The ability of the geometric and constitutive models to predict the deformation and failure behavior is demonstrated by means of selected examples.
Download or read book Advanced Structural Textile Composites Forming written by Peng Wang and published by Elsevier. This book was released on 2024-08-27 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Structural Textile Composites Forming: Characterization, Modeling, and Simulation comprehensively describes the influence of fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization, covering the latest advances in the composites forming field. Part one reviews textile reinforcement architectures and discusses the forming behaviors of important 2D and 3D fabrics. Part two discusses numerical models to conduct simulation analysis of different structural composites forming at mesoscopic and macroscopic scales, in particular, 3D preforms with through-the-thickness yarns. Part three looks at the latest developments in the relationship between forming and other steps in composite manufacturing, such as resin injection, and automated fiber placement (AFP) and the effects on certain mechanical properties, such as structural damage and impact resistance. The book will be an essential reference for academic researchers, industrial engineers and materials scientists working with the manufacture and design of fiber-reinforced composite materials. - Describes the influence of the fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization - Provides numerical modeling and simulation of different fiber-reinforced composites forming at mesoscopic and macroscopic scales, in particular, reinforcements with discontinue fibers, and 3D preforms with through-the-thickness yarns - Discusses cutting edge topics such as resin injection, and automated fiber placement (AFP) and the effects of forming results on mechanical properties such as structural damage and impact resistances
Download or read book DSC HISS Modeling Applications for Problems in Mechanics Geomechanics and Structural Mechanics written by Chandrakant S. Desai and published by CRC Press. This book was released on 2023-11-30 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the mechanical behavior of solids and contacts (interfaces and joints) is vital for the analysis, design, and maintenance of engineering systems. Materials may simultaneously experience the effects of many factors such as elastic, plastic, and creep strains; different loading (stress) paths; volume change under shear stress; and microcracking leading to fracture and failure, strain softening, or degradation. Typically, the available models account for only one factor at a time; however, the disturbed state concept (DSC) with the hierarchical single-surface (HISS) plasticity is a unified modeling approach that can allow for numerous factors simultaneously, and in an integrated manner. DSC/HISS Modeling Applications for Problems in Mechanics, Geomechanics, and Structural Mechanics provides readers with comprehensive information including the basic concepts and applications for the DSC/HISS modeling regarding a wide range of engineering materials and contacts. Uniformity in format and content of each chapter will make it easier for the reader to appreciate the potential of using the DSC/HISS modeling across various applications. Features: • Presents a new and simplified way to learn characterizations and behaviors of materials and contacts under various conditions • Offers modeling applicable to several different materials including geologic (clays, sands, rocks), modified geologic materials (structured soils, overconsolidated soils, expansive soils, loess, frozen soils, chemically treated soils), hydrate-bearing sediments, and more.
Download or read book Time Dependent Constitutive Behavior and Fracture Failure Processes Volume 3 written by Tom Proulx and published by Springer Science & Business Media. This book was released on 2011-05-10 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This the third volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 56 chapters on Time-Dependent Constitutive Fracture and Failure. It presents early findings from experimental and computational investigations on Time Dependent Materials including contributions on Thermal and Mechanical Characterization, Coupled Experimental and Computational Analysis of Fracture Path Selection, Procedures for Mixed Mode Fracture Testing of Bonded Beams, and Experimental Study of Voids in High Strength Aluminum Alloys.
Download or read book Advances in Composites Manufacturing and Process Design written by Philippe Boisse and published by Woodhead Publishing. This book was released on 2015-07-29 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The manufacturing processes of composite materials are numerous and often complex. Continuous research into the subject area has made it hugely relevant with new advances enriching our understanding and helping us overcome design and manufacturing challenges. Advances in Composites Manufacturing and Process Design provides comprehensive coverage of all processing techniques in the field with a strong emphasis on recent advances, modeling and simulation of the design process. Part One reviews the advances in composite manufacturing processes and includes detailed coverage of braiding, knitting, weaving, fibre placement, draping, machining and drilling, and 3D composite processes. There are also highly informative chapters on thermoplastic and ceramic composite manufacturing processes, and repairing composites. The mechanical behaviour of reinforcements and the numerical simulation of composite manufacturing processes are examined in Part Two. Chapters examine the properties and behaviour of textile reinforcements and resins. The final chapters of the book investigate finite element analysis of composite forming, numerical simulation of flow processes, pultrusion processes and modeling of chemical vapour infiltration processes. - Outlines the advances in the different methods of composite manufacturing processes - Provides extensive information on the thermo-mechanical behavior of reinforcements and composite prepregs - Reviews numerical simulations of forming and flow processes, as well as pultrusion processes and modeling chemical vapor infiltration