EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mechanical Modelling of Composites with Reinforcements in Finite Deformation

Download or read book Mechanical Modelling of Composites with Reinforcements in Finite Deformation written by Xiaohao Shi and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanical Response of Composites

Download or read book Mechanical Response of Composites written by Pedro P. Camanho and published by Springer Science & Business Media. This book was released on 2008-06-20 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Themethodologyfordesigninghigh-performancecompositestructuresisstill evo- ing. The complexity of the response of composite materials and the dif?culties in predicting the composite material properties from the basic properties of the c- stituents result in the need for a well-planned and exhaustive test program. The recommended practice to mitigate the technological risks associated with advanced composite materials is to substantiate the performance and durability of the design in a sequence of steps known as the Building Block Approach. The Building Block Approach ensures that cost and performance objectives are met by testing greater numbers of smaller, less expensive specimens. In this way, technology risks are assessed early in the program. In addition, the knowledge acquired at a given level of structural complexity is built up before progressing to a level of increased complexity. Achieving substantiation of structural performance by testing alone can be p- hibitively expensive because of the number of specimens and components required to characterize all material systems, loading scenarios and boundary conditions. Building Block Approachprogramscan achieve signi?cant cost reductionsby se- ing a synergy between testing and analysis. The more the development relies on analysis, the less expensive it becomes. The use of advanced computational models for the prediction of the mechanical response of composite structures can replace some of the mechanical tests and can signi?cantly reduce the cost of designing with composites while providing to the engineers the information necessary to achieve an optimized design.

Book Mechcomp2

    Book Details:
  • Author : Antonio J.M. Ferreira
  • Publisher : Società Editrice Esculapio
  • Release : 2016-05-20
  • ISBN : 8874889631
  • Pages : 204 pages

Download or read book Mechcomp2 written by Antonio J.M. Ferreira and published by Società Editrice Esculapio. This book was released on 2016-05-20 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composites materials have aroused a great interest over the last few decades. Several applications of fibrous composites, functionally graded materials, laminated composites, nano-structured reinforcements, morphing structures, can be found in many engineering fields, such as aerospace, mechanical, naval and civil engineering. The necessity of lightweight structures, smart and adaptive systems, high-level strength, have led both the academic research and the manufacturing development to a recurring employment of these materials. Many journal papers and technical notes have been published extensively over the last seventy years in international scientific journals of different engineering fields. For this reason, the establishment of this second edition of Mechanics of Composites International Conference has appeared appropriate to continue what has been begun during the first edition occurred in 2014 at Stony Brook University (USA). MECHCOMP wants to be an occasion for many researchers from each part of the globe to meet and discuss about the recent advancements regarding the use of composite structures. As a proof of this event, which has taken place in Porto (Portugal), selected plenary and key-note lectures have been collected in the present book.

Book Modeling of the Impact Response of Fibre Reinforced Composites

Download or read book Modeling of the Impact Response of Fibre Reinforced Composites written by Eng Sci Dept/U and published by CRC Press. This book was released on 2020-08-18 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises the development of experimental techniques for determining the impact mechanical properties of fibre reinforced epoxy laminates, and the experimental results obtained for the tensile, compressive and interlaminar shear properties of various epoxy laminates.

Book Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites

Download or read book Multi Scale Continuum Mechanics Modelling of Fibre Reinforced Polymer Composites written by Wim Van Paepegem and published by Woodhead Publishing. This book was released on 2020-11-25 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Book Numerical Analysis and Modelling of Composite Materials

Download or read book Numerical Analysis and Modelling of Composite Materials written by J.W. Bull and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are increasingly used in many applications because they offer the engineer a range of advantages over traditional materials. They are often used in situations where a specified level of performance is required, but where the cost of testing the materials under the extremes of those specifications is very high. In order to solve this problem, engineers are turning to computer Modelling to evaluate the materials under the range of conditions they are likely to encounter. Many of these analyses are carried out in isolation, and yet the evaluation of a range of composites can be carried out using the same basic principles. In this new book the editor has brought together an international panel of authors, each of whom is working on the analysis and Modelling of composite materials. The overage of the book is deliberately wide; to illustrate that similar principles and methods can be used to model and evaluate a wide range of materials. It is also hoped that, by bringing together this range of topics, the insight gained in the study of one composite can be recognized and utilized in the study of others. Professional engineers involved in the specification and testing of composite material structures will find this book an invaluable resource in the course of their work. It will also be of interest to those industrial and academic engineers involved in the design, development, manufacture and applications of composite materials.

Book Multi scale Simulation of Composite Materials

Download or read book Multi scale Simulation of Composite Materials written by Stefan Diebels and published by Springer. This book was released on 2019-02-01 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their high stiffness and strength and their good processing properties short fibre reinforced thermoplastics are well-established construction materials. Up to now, simulation of engineering parts consisting of short fibre reinforced thermoplastics has often been based on macroscopic phenomenological models, but deformations, damage and failure of composite materials strongly depend on their microstructure. The typical modes of failure of short fibre thermoplastics enriched with glass fibres are matrix failure, rupture of fibres and delamination, and pure macroscopic consideration is not sufficient to predict those effects. The typical predictive phenomenological models are complex and only available for very special failures. A quantitative prediction on how failure will change depending on the content and orientation of the fibres is generally not possible, and the direct involvement of the above effects in a numerical simulation requires multi-scale modelling. One the one hand, this makes it possible to take into account the properties of the matrix material and the fibre material, the microstructure of the composite in terms of fibre content, fibre orientation and shape as well as the properties of the interface between fibres and matrix. On the other hand, the multi-scale approach links these local properties to the global behaviour and forms the basis for the dimensioning and design of engineering components. Furthermore, multi-scale numerical simulations are required to allow efficient solution of the models when investigating three-dimensional problems of dimensioning engineering parts. Bringing together mathematical modelling, materials mechanics, numerical methods and experimental engineering, this book provides a unique overview of multi-scale modelling approaches, multi-scale simulations and experimental investigations of short fibre reinforced thermoplastics. The first chapters focus on two principal subjects: the mathematical and mechanical models governing composite properties and damage description. The subsequent chapters present numerical algorithms based on the Finite Element Method and the Boundary Element Method, both of which make explicit use of the composite’s microstructure. Further, the results of the numerical simulations are shown and compared to experimental results. Lastly, the book investigates deformation and failure of composite materials experimentally, explaining the applied methods and presenting the results for different volume fractions of fibres. This book is a valuable resource for applied mathematics, theoretical and experimental mechanical engineers as well as engineers in industry dealing with modelling and simulation of short fibre reinforced composites.

Book Multiscale Modeling and Simulation of Composite Materials and Structures

Download or read book Multiscale Modeling and Simulation of Composite Materials and Structures written by Young Kwon and published by Springer Science & Business Media. This book was released on 2007-12-04 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.

Book Practical Analysis of Composite Laminates

Download or read book Practical Analysis of Composite Laminates written by J. N. Reddy and published by CRC Press. This book was released on 2018-02-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are increasingly used in aerospace, underwater, and automotive structures. They provide unique advantages over their metallic counterparts, but also create complex challenges to analysts and designers. Practical Analysis of Composite Laminates presents a summary of the equations governing composite laminates and provides practical methods for analyzing most common types of composite structural elements. Experimental results for several types of structures are included, and theoretical and experimental correlations are discussed. The last chapter is devoted to practical analysis using Designing Advanced Composites (DAC), a PC-based software on the subject. This comprehensive text can be used for a graduate course in mechanical engineering, and as a valuable reference for professionals in the field.

Book Composite Reinforcements for Optimum Performance

Download or read book Composite Reinforcements for Optimum Performance written by Philippe Boisse and published by Elsevier. This book was released on 2011-09-28 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcements are an integral part of all composites and the quality and performance of the composite can be optimised by modelling the type and structure of the reinforcement before moulding. Composite reinforcements for optimum performance reviews the materials, properties and modelling techniques used in composite production and highlights their uses in optimising performance.Part one covers materials for reinforcements in composites, including chapters on fibres, carbon nanotubes and ceramics as reinforcement materials. In part two, different types of structures for reinforcements are discussed, with chapters covering woven and braided reinforcements, three-dimensional fibre structures and two methods of modelling the geometry of textile reinforcements: WiseTex and TexGen. Part three focuses on the properties of composite reinforcements, with chapters on topics such as in-plane shear properties, transverse compression, bending and permeability properties. Finally, part four covers characterising and modelling of reinforcements in composites, with chapters focusing on such topics as microscopic and mesoscopic approaches, X-ray tomography analysis and modelling reinforcement forming processes.With its distinguished editor and international team of contributors, Composite reinforcements for optimum performance is an essential reference for designers and engineers in the composite and composite reinforcement manufacturing industry, as well as all those with an academic research interest in the subject. Reviews the materials, properties and modelling techniques used in composite production and highlights their uses in performance optimisation Covers materials for reinforcements in composites, including fibres, carbon nanotubes and ceramics Discusses characterising and modelling of reinforcements in composites, focusing on such topics as microscopic and mesoscopic approaches, X-ray tomography analysis and modelling reinforcement forming processes

Book Numerical Modelling of Failure in Advanced Composite Materials

Download or read book Numerical Modelling of Failure in Advanced Composite Materials written by Pedro P. Camanho and published by Woodhead Publishing. This book was released on 2015-08-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials Reviews advanced numerical algorithms for modeling and simulation of failure Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials

Book Progressive Damage Modeling of Tensile Deformation of a Fiber Reinforced Composite Laminate Under Strain Rate Effects

Download or read book Progressive Damage Modeling of Tensile Deformation of a Fiber Reinforced Composite Laminate Under Strain Rate Effects written by Shiguang Deng and published by . This book was released on 2012 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element modeling provides an efficient approach to simulate the mechanical behaviors of composite materials. Many finite element models were built to predict the mechanical responses of composite materials under the static loading conditions. Such static-loading models of composite materials were too modest to predict their behaviors under the dynamic loading process, say varying strain rates. In this thesis, we established both macromechanical and micromechanical finite element models to simulate the progressive damages of fiber reinforced composite materials under varying intermediate strain rates. With the application of the strain-rate-dependent composite properties, failure analysis and associated property degradations of failed composites, we were able to build a macromechanical finite element model to simulate the strain-rate-dependent mechanical behaviors of composite materials under intermediate strain rates. Through the comparison of our numerical results with experimental observations and modeling results reported in the literature, recommended values of mesh densities were presented and the correctness of our macromechanical mode was validated. The model was further developed with a multicontinuum theory (MCT). Based on the macromechanical model, a micromechanical model was developed to study the effects of a MCT-based constituent stress interactive failure criterion on the numerical results of a tensile test on a composite coupon with varying strain rates. The MCT is based on a constituent volume average procedure and was used to calculate the stress and strain states of every constituent within the composite. Based on the stress information of the constituents, associated failure criteria and degradation rules were presented for the model. By comparing the simulation results of the macromechanical and micromechanical models, we found some differences between them and further recommendations were given for modifying the present model to simulate the progressive damage dynamic responses of composite structures more precisely.

Book Applications of Finite Element Modeling for Mechanical and Mechatronic Systems

Download or read book Applications of Finite Element Modeling for Mechanical and Mechatronic Systems written by Marek Krawczuk and published by MDPI. This book was released on 2021-09-02 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern engineering practice requires advanced numerical modeling because, among other things, it reduces the costs associated with prototyping or predicting the occurrence of potentially dangerous situations during operation in certain defined conditions. Thus far, different methods have been used to implement the real structure into the numerical version. The most popular uses have been variations of the finite element method (FEM). The aim of this Special Issue has been to familiarize the reader with the latest applications of the FEM for the modeling and analysis of diverse mechanical problems. Authors are encouraged to provide a concise description of the specific application or a potential application of the Special Issue.

Book Asymptotical Mechanics of Composites

Download or read book Asymptotical Mechanics of Composites written by Igor V. Andrianov and published by Springer. This book was released on 2017-11-09 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.

Book Computational Mesomechanics of Composites

Download or read book Computational Mesomechanics of Composites written by Leon L. Mishnaevsky, Jr and published by John Wiley & Sons. This book was released on 2007-08-20 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.