Download or read book Matrix Methods And Fractional Calculus written by Arak M Mathai and published by World Scientific. This book was released on 2017-11-10 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.
Download or read book Fractional Calculus and Fractional Differential Equations written by Varsha Daftardar-Gejji and published by Springer. This book was released on 2019-08-10 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.
Download or read book Fractional Differential Equations Numerical Methods for Applications written by Matthew Harker and published by Springer. This book was released on 2020-01-25 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive set of practical tools for exploring and discovering the world of fractional calculus and its applications, and thereby a means of bridging the theory of fractional differential equations (FDE) with real-world facts. These tools seamlessly blend centuries old numerical methods such as Gaussian quadrature that have stood the test of time with pioneering concepts such as hypermatrix equations to harness the emerging capabilities of modern scientific computing environments. This unique fusion of old and new leads to a unified approach that intuitively parallels the classic theory of differential equations, and results in methods that are unprecedented in computational speed and numerical accuracy. The opening chapter is an introduction to fractional calculus that is geared towards scientists and engineers. The following chapter introduces the reader to the key concepts of approximation theory with an emphasis on the tools of numerical linear algebra. The third chapter provides the keystone for the remainder of the book with a comprehensive set of methods for the approximation of fractional order integrals and derivatives. The fourth chapter describes the numerical solution of initial and boundary value problems for FDE of a single variable, both linear and nonlinear. Moving to two, three, and four dimensions, the ensuing chapter is devoted to a novel approach to the numerical solution of partial FDE that leverages the little-known one-to-one relation between partial differential equations and matrix and hypermatrix equations. The emphasis on applications culminates in the final chapter by addressing inverse problems for ordinary and partial FDE, such as smoothing for data analytics, and the all-important system identification problem. Over a century ago, scientists such as Ludwig Boltzmann and Vito Volterra formulated mathematical models of real materials that -- based on physical evidence -- integrated the history of the system. The present book will be invaluable to students and researchers in fields where analogous phenomena arise, such as viscoelasticity, rheology, polymer dynamics, non-Newtonian fluids, bioengineering, electrochemistry, non-conservative mechanics, groundwater hydrology, NMR and computed tomography, mathematical economics, thermomechanics, anomalous diffusion and transport, control theory, supercapacitors, and genetic algorithms, to name but a few. These investigators will be well-equipped with reproducible numerical methods to explore and discover their particular field of application of FDE.
Download or read book The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order written by and published by Elsevier. This book was released on 1974-09-05 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Download or read book Theory and Numerical Approximations of Fractional Integrals and Derivatives written by Changpin Li and published by SIAM. This book was released on 2019-10-31 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its ubiquity across a variety of fields in science and engineering, fractional calculus has gained momentum in industry and academia. While a number of books and papers introduce either fractional calculus or numerical approximations, no current literature provides a comprehensive collection of both topics. This monograph introduces fundamental information on fractional calculus, provides a detailed treatment of existing numerical approximations, and presents an inclusive review of fractional calculus in terms of theory and numerical methods and systematically examines almost all existing numerical approximations for fractional integrals and derivatives. The authors consider the relationship between the fractional Laplacian and the Riesz derivative, a key component absent from other related texts, and highlight recent developments, including their own research and results. The core audience spans several fractional communities, including those interested in fractional partial differential equations, the fractional Laplacian, and applied and computational mathematics. Advanced undergraduate and graduate students will find the material suitable as a primary or supplementary resource for their studies.
Download or read book Fractional Differential Equations written by Igor Podlubny and published by Elsevier. This book was released on 1998-10-27 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives
Download or read book Numerical Methods for Fractional Calculus written by Changpin Li and published by CRC Press. This book was released on 2015-05-19 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Fractional Calculus presents numerical methods for fractional integrals and fractional derivatives, finite difference methods for fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs), and finite element methods for FPDEs.The book introduces the basic definitions and propertie
Download or read book Fractional Calculus written by Roy Abi Zeid Daou and published by Nova Science Publishers. This book was released on 2014-01-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of this two-volume book, presents history, the mathematical modelling and the applications of fractional order systems, and contains mathematical and theoretical studies and research related to this domain. This volume is made up of 11 chapters. The first chapter presents an analysis of the Caputo derivative and the pseudo state representation with the infinite state approach. The second chapter studies the stability of a class of fractional Cauchy problems. The third chapter shows how to solve fractional order differential equations and fractional order partial differential equations using modern matrix algebraic approaches. Following this chapter, chapter four proposes another analytical method to solve differential equations with local fractional derivative operators. Concerning chapter five, it presents the extended Borel transform and its related fractional analysis. After presenting the analytical resolution methods for fractional calculus, chapter six shows the essentials of fractional calculus on discrete settings. The initialisation of such systems is shown in chapter seven. In fact, this chapter presents a generalised application of the Hankel operator for initialisation of fractional order systems. The last four chapters show some new studies and applications of non-integer calculus. In fact, chapter eight presents the fractional reaction-transport equations and evanescent continuous time random walks. Chapter nine shows a novel approach in the exponential integrators for fractional differential equations. Chapter ten presents the non-fragile tuning of fractional order PD controllers for integrating time delay systems. At the end, chapter eleven proposes a discrete finite-dimensional approximation of linear infinite dimensional systems. To sum up, this volume presents a mathematical and theoretical study of fractional calculus along with a stability study and some applications. This volume ends up with some new techniques and methods applied in fractional calculus. This volume will be followed up by a second volume that focuses on the applications of fractional calculus in several engineering domains.
Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Download or read book Solved Exercises in Fractional Calculus written by Edmundo Capelas de Oliveira and published by Springer. This book was released on 2019-05-31 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a brief historical introduction and state of the art in fractional calculus. The author introduces some of the so-called special functions, in particular, those which will be directly involved in calculations. The concepts of fractional integral and fractional derivative are also presented. Each chapter, except for the first one, contains a list of exercises containing suggestions for solving them and at last the resolution itself. At the end of those chapters there is a list of complementary exercises. The last chapter presents several applications of fractional calculus.
Download or read book Fractional Calculus An Introduction For Physicists Third Edition written by Richard Herrmann and published by World Scientific. This book was released on 2018-07-09 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'The third edition of this book is designed to carefully and coherently introduce fractional calculus to physicists, by applying the ideas to two distinct applications: classical problems and multi-particle quantum problems. There remain many open questions and the field remains an active area of research. Dr Herrmann’s book is an excellent introduction to this field of study.'Contemporary PhysicsThe book presents a concise introduction to the basic methods and strategies in fractional calculus which enables the reader to catch up with the state-of-the-art in this field and to participate and contribute in the development of this exciting research area.This book is devoted to the application of fractional calculus on physical problems. The fractional concept is applied to subjects in classical mechanics, image processing, folded potentials in cluster physics, infrared spectroscopy, group theory, quantum mechanics, nuclear physics, hadron spectroscopy up to quantum field theory and will surprise the reader with new intriguing insights.This new, extended edition includes additional chapters about numerical solution of the fractional Schrödinger equation, self-similarity and the geometric interpretation of non-isotropic fractional differential operators. Motivated by the positive response, new exercises with elaborated solutions are added, which significantly support a deeper understanding of the general aspects of the theory.Besides students as well as researchers in this field, this book will also be useful as a supporting medium for teachers teaching courses devoted to this subject.
Download or read book Theory and Applications of Fractional Differential Equations written by A.A. Kilbas and published by Elsevier. This book was released on 2006-02-16 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.
Download or read book Special Functions in Fractional Calculus and Engineering written by Harendra Singh and published by CRC Press. This book was released on 2023-06-29 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions play a very important role in solving various families of ordinary and partial differential equations as well as their fractional-order analogs, which model real-life situations. Owing to the non-local nature and memory effect, fractional calculus is capable of modeling many situations which arise in engineering. This book includes a collection of related topics associated with such equations and their relevance and significance in engineering. Special Functions in Fractional Calculus and Engineering highlights the significance and applicability of special functions in solving fractional-order differential equations with engineering applications. This book focuses on the non-local nature and memory effect of fractional calculus in modeling relevant to engineering science and covers a variety of important and useful methods using special functions for solving various types of fractional-order models relevant to engineering science. This book goes on to illustrate the applicability and usefulness of special functions by justifying their numerous and widespread occurrences in the solution of fractional-order differential, integral, and integrodifferential equations. This book holds a wide variety of interconnected fundamental and advanced topics with interdisciplinary applications that combine applied mathematics and engineering sciences, which are useful to graduate students, Ph.D. scholars, researchers, and educators interested in special functions, fractional calculus, mathematical modeling, and engineering.
Download or read book An Introduction to Fractional Calculus written by A. M. Mathai and published by Nova Science Publishers. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a modified version of Module 10 of the Centre for Mathematical and Statistical Sciences (CMSS). CMSS modules are notes prepared on various topics with many examples from real-life situations and exercises so that the subject matter becomes interesting to students. These modules are used for undergraduate level courses and graduate level training in various topics at CMSS. Aside from Module 8, these modules were developed by Dr A M Mathai, Director of CMSS and Emeritus Professor of Mathematics and Statistics, McGill University, Canada. Module 8 is based on the lecture notes of Professor W J Anderson of McGill University, developed for his undergraduate course (Mathematics 447). Professor Dr Hans J Haubold has been a research collaborator of Dr A M Mathais since 1984, mainly in the areas of astrophysics, special functions and statistical distribution theory. He is also a lifetime member of CMSS and a Professor at CMSS. A large number of papers have been published jointly in these areas since 1984. The following monographs and books have been brought out in conjunction with this joint research: Modern Problems in Nuclear and Neutrino Astrophysics (A M Mathai and H J Haubold, 1988, Akademie-Verlag, Berlin); Special Functions for Applied Scientists (A MMathai and H J Haubold, 2008, Springer, New York); and The H-Function: Theory and Applications (A M Mathai, R K Saxena and H J Haubold, 2010, Springer, New York). These CMSS modules are printed at CMSS Press and published by CMSS. Copies are made available to students free of charge, and to researchers and others at production cost. For the preparation of the initial drafts of all these modules, financial assistance was made available from the Department of Science and Technology, the Government of India (DST), New Delhi under project number SR/S4/MS:287/05. Hence, the authors would like to express their thanks and gratitude to DST, the Government of India, for its financial assistance.
Download or read book Fractional Order Analysis written by Hemen Dutta and published by John Wiley & Sons. This book was released on 2020-08-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.
Download or read book Fractional Calculus Theory and Applications written by Francesco Mainardi and published by MDPI. This book was released on 2018-09-20 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Fractional Calculus: Theory and Applications" that was published in Mathematics
Download or read book Mathematical Economics written by Vasily E. Tarasov and published by MDPI. This book was released on 2020-06-03 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the application of fractional calculus in economics to describe processes with memory and non-locality. Fractional calculus is a branch of mathematics that studies the properties of differential and integral operators that are characterized by real or complex orders. Fractional calculus methods are powerful tools for describing the processes and systems with memory and nonlocality. Recently, fractional integro-differential equations have been used to describe a wide class of economical processes with power law memory and spatial nonlocality. Generalizations of basic economic concepts and notions the economic processes with memory were proposed. New mathematical models with continuous time are proposed to describe economic dynamics with long memory. This book is a collection of articles reflecting the latest mathematical and conceptual developments in mathematical economics with memory and non-locality based on applications of fractional calculus.