EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematics for the Physical Sciences

Download or read book Mathematics for the Physical Sciences written by Leslie Copley and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-03-30 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book begins with a thorough introduction to complex analysis, which is then used to understand the properties of ordinary differential equations and their solutions. The latter are obtained in both series and integral representations. Integral transforms are introduced, providing an opportunity to complement complex analysis with techniques that flow from an algebraic approach. This moves naturally into a discussion of eigenvalue and boundary vale problems. A thorough discussion of multi-dimensional boundary value problems then introduces the reader to the fundamental partial differential equations and “special functions” of mathematical physics. Moving to non-homogeneous boundary value problems the reader is presented with an analysis of Green’s functions from both analytical and algebraic points of view. This leads to a concluding chapter on integral equations.

Book Mathematics for the Physical Sciences

Download or read book Mathematics for the Physical Sciences written by Herbert S Wilf and published by Courier Corporation. This book was released on 2013-01-18 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics include vector spaces and matrices; orthogonal functions; polynomial equations; asymptotic expansions; ordinary differential equations; conformal mapping; and extremum problems. Includes exercises and solutions. 1962 edition.

Book Mathematics for Physical Science and Engineering

Download or read book Mathematics for Physical Science and Engineering written by Frank E. Harris and published by Academic Press. This book was released on 2014-05-24 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems

Book The Role of Mathematics in Physical Sciences

Download or read book The Role of Mathematics in Physical Sciences written by Giovanni Boniolo and published by Springer Science & Business Media. This book was released on 2005-07-22 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even though mathematics and physics have been related for centuries and this relation appears to be unproblematic, there are many questions still open: Is mathematics really necessary for physics, or could physics exist without mathematics? Should we think physically and then add the mathematics apt to formalise our physical intuition, or should we think mathematically and then interpret physically the obtained results? Do we get mathematical objects by abstraction from real objects, or vice versa? Why is mathematics effective into physics? These are all relevant questions, whose answers are necessary to fully understand the status of physics, particularly of contemporary physics. The aim of this book is to offer plausible answers to such questions through both historical analyses of relevant cases, and philosophical analyses of the relations between mathematics and physics.

Book Mathematics for the Physical Sciences

Download or read book Mathematics for the Physical Sciences written by Laurent Schwartz and published by Courier Dover Publications. This book was released on 2008-04-21 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise treatment of mathematical entities employs examples from the physical sciences. Topics include distribution theory, Fourier series, Laplace transforms, wave and heat conduction equations, and gamma and Bessel functions. 1966 edition.

Book Mathematical Methods in the Physical Sciences

Download or read book Mathematical Methods in the Physical Sciences written by Mary L. Boas and published by John Wiley & Sons. This book was released on 2006 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.

Book Mathematics for the Physical Sciences

Download or read book Mathematics for the Physical Sciences written by James B. Seaborn and published by . This book was released on 2014-09-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Further Mathematics for the Physical Sciences

Download or read book Further Mathematics for the Physical Sciences written by Michael Tinker and published by John Wiley & Sons. This book was released on 2000-06-08 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: Further Mathematics for the Physical Sciences Further Mathematics for the Physical Sciences aims to build upon the reader's knowledge of basic mathematical methods, through a gradual progression to more advanced methods and techniques. Carefully structured as a series of self-paced and self-contained chapters, this text covers the essential and most important techniques needed by physical science students. Starting with complex numbers, the text then moves on to cover vector algebra, determinants, matrices, differentiation, integration, differential equations and finally vector calculus, all within an applied environment. The reader is guided through these different techniques with the help of numerous worked examples, applications, problems, figures and summaries. The authors aim to provide high-quality and thoroughly class-tested material to meet the changing needs of science students. Further Mathematics for the Physical Sciences: * Is a carefully structured text, with self-contained chapters. * Gradually introduces mathematical techniques within an applied environment. * Includes many worked examples, applications, problems and summaries in each chapter. Further Mathematics for the Physical Sciences will be invaluable to all students of physics, chemistry and engineering, needing to develop or refresh their knowledge of basic mathematics. The book's structure will make it equally valuable for course use, home study or distance learning.

Book Physical Mathematics

    Book Details:
  • Author : Kevin Cahill
  • Publisher : Cambridge University Press
  • Release : 2013-03-14
  • ISBN : 1107310733
  • Pages : 685 pages

Download or read book Physical Mathematics written by Kevin Cahill and published by Cambridge University Press. This book was released on 2013-03-14 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

Book Student Solution Manual for Foundation Mathematics for the Physical Sciences

Download or read book Student Solution Manual for Foundation Mathematics for the Physical Sciences written by K. F. Riley and published by Cambridge University Press. This book was released on 2011-03-28 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Student Solution Manual provides complete solutions to all the odd-numbered problems in Foundation Mathematics for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to arrive at the correct answer and improve their problem-solving skills.

Book Probability and Related Topics in Physical Sciences

Download or read book Probability and Related Topics in Physical Sciences written by Mark Kac and published by American Mathematical Soc.. This book was released on 1959-12-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nothing provided

Book Essential Mathematics for the Physical Sciences  Volume 1

Download or read book Essential Mathematics for the Physical Sciences Volume 1 written by Brett Borden and published by Morgan & Claypool Publishers. This book was released on 2017-10-31 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus asound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations (PDEs) and the special functions introduced. Solving PDEs can't be done, however, outside of the context in which they apply to physical systems. The solutions to PDEs must conform to boundary conditions, a set of additional constraints in space or time to be satisfied at the boundaries of the system, that small part of the universe under study. The first volume is devoted to homogeneous boundary-value problems (BVPs), homogeneous implying a system lacking a forcing function, or source function. The second volume takes up (in addition to other topics) inhomogeneous problems where, in addition to the intrinsic PDE governing a physical field, source functions are an essential part of the system. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well. It is based on the assumption that it follows a math review course, and was designed to coincide with the second quarter of student study, which is dominated by BVPs but also requires an understanding of special functions and Fourier analysis.

Book Basic Mathematics for the Physical Sciences   Further Mathematics for the Physical Sciences Set

Download or read book Basic Mathematics for the Physical Sciences Further Mathematics for the Physical Sciences Set written by Robert Lambourne and published by Wiley. This book was released on 2013-06-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides high-quality and thoroughly class-tested basic mathematics for the physical sciences This book set provides a thorough introduction to the essential mathematical techniques needed in the physical sciences. Carefully structured as a series of self-paced and self-contained chapters, it covers the basic techniques on which more advanced material is built. Starting with arithmetic and algebra, Basic Mathematics for the Physical Sciences then moves on to cover basic elements of geometry, vector algebra, differentiation and finally integration, all within an applied environment. The book handily guides readers through these different techniques with the help of numerous worked examples, applications, problems, figures, and summaries.

Book Mathematics And The Natural Sciences  The Physical Singularity Of Life

Download or read book Mathematics And The Natural Sciences The Physical Singularity Of Life written by Giuseppe Longo and published by World Scientific. This book was released on 2011-03-04 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a

Book Mathematics for Natural Scientists

Download or read book Mathematics for Natural Scientists written by Lev Kantorovich and published by Springer. This book was released on 2015-10-08 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

Book Student Solution Manual for Essential Mathematical Methods for the Physical Sciences

Download or read book Student Solution Manual for Essential Mathematical Methods for the Physical Sciences written by K. F. Riley and published by Cambridge University Press. This book was released on 2011-02-17 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Student Solution Manual provides complete solutions to all the odd-numbered problems in Essential Mathematical Methods for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working. Students will learn by example how to select an appropriate method, improving their problem-solving skills.

Book Higher Mathematics for Physics and Engineering

Download or read book Higher Mathematics for Physics and Engineering written by Hiroyuki Shima and published by Springer Science & Business Media. This book was released on 2010-04-12 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.