Download or read book Mathematical Theories of Populations written by Frank. Hoppensteadt and published by SIAM. This book was released on 1975-01-01 with total page 79 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical theories of populations have appeared both implicitly and explicitly in many important studies of populations, human populations as well as populations of animals, cells and viruses. They provide a systematic way for studying a population's underlying structure. A basic model in population age structure is studied and then applied, extended and modified, to several population phenomena such as stable age distributions, self-limiting effects, and two-sex populations. Population genetics are studied with special attention to derivation and analysis of a model for a one-locus, two-allele trait in a large randomly mating population. The dynamics of contagious phenomena in a population are studied in the context of epidemic diseases.
Download or read book A Short History of Mathematical Population Dynamics written by Nicolas Bacaër and published by Springer Science & Business Media. This book was released on 2011-02-01 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.
Download or read book Mathematical Population Genetics 1 written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2004-01-09 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Download or read book Mathematical Models in Population Biology and Epidemiology written by Fred Brauer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
Download or read book The Mathematical Theory of Selection Recombination and Mutation written by R. Bürger and published by John Wiley & Sons. This book was released on 2000-11-02 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: "It is close to being a masterpiece...could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail. * Provides a unified, self-contained and in-depth study of the theory of multilocus systems * Introduces the basic population-genetic models * Explores the dynamical and equilibrium properties of the distribution of quantitative traits under selection * Summarizes important results from more demanding sections in a comprehensible way * Employs a clear and logical presentation style Following an introduction to elementary population genetics and discussion of the general theory of selection at two or more loci, the author considers a number of mutation-selection models, and derives the dynamical equations for polygenic traits under general selective regimes. The final chapters are concerned with the maintenance of quantitative-genetic variation, the response to directional selection, the evolutionary role of deleterious mutations, and other topics. Graduate students and researchers in population genetics, evolutionary theory, and biomathematics will benefit from the in-depth coverage. This text will make an excellent reference volume for the fields of quantitative genetics, population and theoretical biology.
Download or read book Mathematics in Population Biology written by Horst R. Thieme and published by Princeton University Press. This book was released on 2018-06-05 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is developed in Part II, covering demographic concepts, such as life expectation and variance of life length, and their dynamic consequences. In Part III, the author considers the dynamic interplay of host and parasite populations, i.e., the epidemics and endemics of infectious diseases. The theme of stage structure continues here in the analysis of different stages of infection and of age-structure that is instrumental in optimizing vaccination strategies. Each section concludes with exercises, some with solutions, and suggestions for further study. The level of mathematics is relatively modest; a "toolbox" provides a summary of required results in differential equations, integration, and integral equations. In addition, a selection of Maple worksheets is provided. The book provides an authoritative tour through a dazzling ensemble of topics and is both an ideal introduction to the subject and reference for researchers.
Download or read book An Introduction to Mathematical Population Dynamics written by Mimmo Iannelli and published by Springer. This book was released on 2015-01-23 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to mathematical biology for students with no experience in biology, but who have some mathematical background. The work is focused on population dynamics and ecology, following a tradition that goes back to Lotka and Volterra, and includes a part devoted to the spread of infectious diseases, a field where mathematical modeling is extremely popular. These themes are used as the area where to understand different types of mathematical modeling and the possible meaning of qualitative agreement of modeling with data. The book also includes a collections of problems designed to approach more advanced questions. This material has been used in the courses at the University of Trento, directed at students in their fourth year of studies in Mathematics. It can also be used as a reference as it provides up-to-date developments in several areas.
Download or read book Mathematical Demography written by David P. Smith and published by Springer Science & Business Media. This book was released on 2013-07-23 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical demography is the centerpiece of quantitative social science. The founding works of this field from Roman times to the late Twentieth Century are collected here, in a new edition of a classic work by David R. Smith and Nathan Keyfitz. Commentaries by Smith and Keyfitz have been brought up to date and extended by Kenneth Wachter and Hervé Le Bras, giving a synoptic picture of the leading achievements in formal population studies. Like the original collection, this new edition constitutes an indispensable source for students and scientists alike, and illustrates the deep roots and continuing vitality of mathematical demography.
Download or read book Mathematical Ecology of Populations and Ecosystems written by John Pastor and published by John Wiley & Sons. This book was released on 2011-08-31 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATHEMATICAL ECOLOGY Population ecologists study how births and deaths affect the dynamics of populations and communities, while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed. Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Download or read book Mathematical Population Genetics 1 written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2012-10-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Download or read book Mathematical Models written by Richard Haberman and published by SIAM. This book was released on 1998-12-01 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author uses mathematical techniques to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow.
Download or read book Theory of Nonlinear Age Dependent Population Dynamics written by Glenn F. Webb and published by CRC Press. This book was released on 1985-01-05 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integrated Population Models written by Michael Schaub and published by Academic Press. This book was released on 2021-11-12 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Population Models: Theory and Ecological Applications with R and JAGS is the first book on integrated population models, which constitute a powerful framework for combining multiple data sets from the population and the individual levels to estimate demographic parameters, and population size and trends. These models identify drivers of population dynamics and forecast the composition and trajectory of a population. Written by two population ecologists with expertise on integrated population modeling, this book provides a comprehensive synthesis of the relevant theory of integrated population models with an extensive overview of practical applications, using Bayesian methods by means of case studies. The book contains fully-documented, complete code for fitting all models in the free software, R and JAGS. It also includes all required code for pre- and post-model-fitting analysis. Integrated Population Models is an invaluable reference for researchers and practitioners involved in population analysis, and for graduate-level students in ecology, conservation biology, wildlife management, and related fields. The text is ideal for self-study and advanced graduate-level courses. - Offers practical and accessible ecological applications of IPMs (integrated population models) - Provides full documentation of analyzed code in the Bayesian framework - Written and structured for an easy approach to the subject, especially for non-statisticians
Download or read book Mathematical Population Dynamics and Epidemiology in Temporal and Spatio Temporal Domains written by Harkaran Singh and published by CRC Press. This book was released on 2018-12-07 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mankind now faces even more challenging environment- and health-related problems than ever before. Readily available transportation systems facilitate the swift spread of diseases as large populations migrate from one part of the world to another. Studies on the spread of the communicable diseases are very important. This book, Mathematical Population Dynamics and Epidemiology in Temporal and Spatio-Temporal Domains, provides a useful experimental tool for making practical predictions, building and testing theories, answering specific questions, determining sensitivities of the parameters, forming control strategies, and much more. This volume focuses on the study of population dynamics with special emphasis on the migration of populations and the spreading of epidemics among human and animal populations. It also provides the background needed to interpret, construct, and analyze a wide variety of mathematical models. Most of the techniques presented in the book can be readily applied to model other phenomena, in biology as well as in other disciplines.
Download or read book Dynamical Systems in Population Biology written by Xiao-Qiang Zhao and published by Springer Science & Business Media. This book was released on 2013-06-05 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.
Download or read book Introduction to Theoretical Population Genetics written by Thomas Nagylaki and published by Springer Science & Business Media. This book was released on 2013-03-12 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).
Download or read book Population Genetics of Multiple Loci written by Freddy B. Christiansen and published by . This book was released on 2000-01-10 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Population Genetics of Multiple Loci F. B. Christiansen University of Aarhus, Denmark "This is a very beautiful and powerful study of an area that Christiansen has dominated for many years." - Marcus Feldman, Stanford University, USA Population genetics thrives on the constant interaction between theoretical and empirical knowledge. In the first instance, population genetics was developed using one-locus, two-allele models for genetic variation. The simplicity of these models opened up theoretical developments in population and evolutionary genetics to biologists without specialist training in mathematics. Population genetics of multi-allelic loci is more complex and requires more mathematical insight, and its study is predominantly undertaken by mathematical biologists. Traditional formulations of multi-locus theory do not simplify by assuming two alleles per locus. In this elegant presentation the author provides a formulation of multi-locus population genetics that retains the simplicity of two-allele models. * Provides an accessible and natural extension of classical population genetics to multiple loci * Exposes the population genetic aspects of sexual reproduction * Describes the complexity of evolutionary interactions among genes * Provides the background for insight into the functioning of genetic algorithms applied in computer science * Written by a world leader in the field The book is divided into two main sections. Part I - Recombination and Segregation - includes coverage of random mating, inbreeding, migration and mixing. Part II - Selection - covers numerous phenomena involving natural selection including viability, fertility, mutation and migration. The author has successfully presented the theory in a way that is intelligible to anyone with a reasonably good background in basic mathematics and is devoted to learning multiple loci population genetics. The text is primarily aimed at advanced undergraduate and postgraduate students and researchers interested in genetics and population biology. It is also essential reading for those working or researching in biomathematics and adaptive computing.