EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Studies on Human Disease Dynamics

Download or read book Mathematical Studies on Human Disease Dynamics written by Abba B. Gumel and published by American Mathematical Soc.. This book was released on 2006 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS-SIAM-IMS Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, held in Snowbird, Utah, July 17-21, 2005. The goal of the conference was to bring together leading and upcoming researchers to discuss the latest advances and challenges associated with the modeling of the dynamics of emerging and re-emerging diseases, and to explore various control strategies. The articles included in this book are devoted to some of the significant recent advances, trends, and challenges associated with the mathematical modeling and analysis of the dynamics and control of some diseases of public health importance. In addition to illustrating many of the diverse prevailing epidemiological challenges, together with the diversity of mathematical approaches needed to address them, this book provides insights on a number of topical modeling issues such as the modeling and control of mosquito-borne diseases, respiratory diseases, animal diseases (such as foot-and-mouth disease), cancer and tumor growth modeling, influenza, HIV, HPV, rotavirus, etc. This book also touches upon other important topics such as the use of modeling i

Book Mathematical Studies on Human Disease Dynamics

Download or read book Mathematical Studies on Human Disease Dynamics written by Abba B. Gumel and published by . This book was released on 2006 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Understanding of Infectious Disease Dynamics

Download or read book Mathematical Understanding of Infectious Disease Dynamics written by Stefan Ma and published by World Scientific. This book was released on 2009 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Original book with a comprehensive collection of many significant topics of the frontiers in applied presentation of many epidemic models with many real-life examples. presents an integration of interesting ideas from the well-mixed fields of statistics and mathematics. A valuable resource for researchers in wide range of disciplines to solve problems of practical interest.

Book Mathematical Understanding of Infectious Disease Dynamics

Download or read book Mathematical Understanding of Infectious Disease Dynamics written by Stefan Ma and published by World Scientific. This book was released on 2009 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Institute for Mathematical Sciences at the National University of Singapore hosted a research program on Mathematical Modeling of Infectious Diseases: Dynamics and Control from 15 August to 9 October 2005. As part of the program, tutorials for graduate students and junior researchers were given by leading experts in the field.

Book Mathematical Tools for Understanding Infectious Disease Dynamics

Download or read book Mathematical Tools for Understanding Infectious Disease Dynamics written by Odo Diekmann and published by Princeton University Press. This book was released on 2012-11-18 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout

Book Disease Dynamics

    Book Details:
  • Author : Alexander Asachenkov
  • Publisher : Springer Science & Business Media
  • Release : 1993-12-23
  • ISBN : 9780817636920
  • Pages : 344 pages

Download or read book Disease Dynamics written by Alexander Asachenkov and published by Springer Science & Business Media. This book was released on 1993-12-23 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses mathematical modelling, analysis and control of the immune system and disease dynamics. The purpose of the book is the practical application of mathematics to immunology and medicine in order to establish a basis for more effective treatment, to provide a tutorial systematic description of how the immune system controls diseases and to present several significant examples such as malignant tumour dynamics and control, and viral hepatitis.

Book Dynamic Models of Infectious Diseases

Download or read book Dynamic Models of Infectious Diseases written by V. Sree Hari Rao and published by Springer Science & Business Media. This book was released on 2013-11-30 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though great advances in public health are witnessed world over in recent years, infectious diseases, besides insect vector-borne infectious diseases remain a leading cause of morbidity and mortality. Control of the epidemics caused by the non-vector borne diseases such as tuberculosis, avian influenza (H5N1) and cryptococcus gattii, have left a very little hope in the past. The advancement of research in science and technology has paved way for the development of new tools and methodologies to fight against these diseases. In particular, intelligent technology and machine-learning based methodologies have rendered useful in developing more accurate predictive tools for the early diagnosis of these diseases. In all these endeavors the main focus is the understanding that the process of transmission of an infectious disease is nonlinear (not necessarily linear) and dynamical in character. This concept compels the appropriate quantification of the vital parameters that govern these dynamics. This book is ideal for a general science and engineering audience requiring an in-depth exposure to current issues, ideas, methods, and models. The topics discussed serve as a useful reference to clinical experts, health scientists, public health administrators, medical practioners, and senior undergraduate and graduate students in applied mathematics, biology, bioinformatics, and epidemiology, medicine and health sciences.

Book Mathematical Models in Population Biology and Epidemiology

Download or read book Mathematical Models in Population Biology and Epidemiology written by Fred Brauer and published by Springer Science & Business Media. This book was released on 2011-11-09 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Book Mathematical Models for Communicable Diseases

Download or read book Mathematical Models for Communicable Diseases written by Fred Brauer and published by SIAM. This book was released on 2013-02-07 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained and comprehensive guide to the mathematical modeling of disease transmission, appropriate for graduate students.

Book Mathematical Tools for Understanding Infectious Disease Dynamics

Download or read book Mathematical Tools for Understanding Infectious Disease Dynamics written by Odo Diekmann and published by Princeton University Press. This book was released on 2013 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology.

Book Mathematical Models in Epidemiology

Download or read book Mathematical Models in Epidemiology written by Fred Brauer and published by Springer Nature. This book was released on 2019-10-10 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.

Book Mathematics of Continuous and Discrete Dynamical Systems

Download or read book Mathematics of Continuous and Discrete Dynamical Systems written by Abba B. Gumel and published by American Mathematical Soc.. This book was released on 2014-06-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Nonstandard Finite-Difference Discretizations and Nonlinear Oscillations, in honor of Ronald Mickens's 70th birthday, held January 9-10, 2013, in San Diego, CA. Included are papers on design and analysis of discrete-time and continuous-time dynamical systems arising in the natural and engineering sciences, in particular, the design of robust nonstandard finite-difference methods for solving continuous-time ordinary and partial differential equation models, the analytical and numerical study of models that undergo nonlinear oscillations, as well as the design of deterministic and stochastic models for epidemiological and ecological processes. Some of the specific topics covered in the book include the analysis of deterministic and stochastic SIR-type models, the assessment of cost-effectiveness of vaccination problems, finite-difference methods for oscillatory dynamical systems (including the Schrödinger equation and Brusselator system), the design of exact and elementary stable finite-difference methods, the study of a two-patch model with Allee effects and disease-modified fitness, the study of the delay differential equation model with application to circadian rhythm and the application of some special functions in the solutions of some problems arising in the natural and engineering sciences. A notable feature of the book is the collection of some relevant open problems, intended to help guide the direction of future research in the area.

Book An Introduction to Undergraduate Research in Computational and Mathematical Biology

Download or read book An Introduction to Undergraduate Research in Computational and Mathematical Biology written by Hannah Callender Highlander and published by Springer Nature. This book was released on 2020-02-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Speaking directly to the growing importance of research experience in undergraduate mathematics programs, this volume offers suggestions for undergraduate-appropriate research projects in mathematical and computational biology for students and their faculty mentors. The aim of each chapter is twofold: for faculty, to alleviate the challenges of identifying accessible topics and advising students through the research process; for students, to provide sufficient background, additional references, and context to excite students in these areas and to enable them to successfully undertake these problems in their research. Some of the topics discussed include: • Oscillatory behaviors present in real-world applications, from seasonal outbreaks of childhood diseases to action potentials in neurons • Simulating bacterial growth, competition, and resistance with agent-based models and laboratory experiments • Network structure and the dynamics of biological systems • Using neural networks to identify bird species from birdsong samples • Modeling fluid flow induced by the motion of pulmonary cilia Aimed at undergraduate mathematics faculty and advanced undergraduate students, this unique guide will be a valuable resource for generating fruitful research collaborations between students and faculty.

Book Infectious Diseases of Humans

Download or read book Infectious Diseases of Humans written by Roy M. Anderson and published by Oxford University Press. This book was released on 1991 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with infectious diseases -- viral, bacterial, protozoan and helminth -- in terms of the dynamics of their interaction with host populations. The book combines mathematical models with extensive use of epidemiological and other data. This analytic framework is highly useful for the evaluation of public health strategies aimed at controlling or eradicating particular infections. Such a framework is increasingly important in light of the widespread concern for primary health care programs aimed at such diseases as measles, malaria, river blindness, sleeping sickness, and schistosomiasis, and the advent of AIDS/HIV and other emerging viruses. Throughout the book, the mathematics is used as a tool for thinking clearly about fundamental and applied problems having to do with infectious diseases. The book is divided into two parts, one dealing with microparasites (viruses, bacteria and protozoans) and the other with macroparasites (helminths and parasitic arthropods). Each part begins with simple models, developed in a biologically intuitive way, and then goes on to develop more complicated and realistic models as tools for public health planning. The book synthesizes previous work in this rapidly growing field (much of which is scattered between the ecological and the medical literature) with a good deal of new material.

Book Infectious Disease Informatics and Biosurveillance

Download or read book Infectious Disease Informatics and Biosurveillance written by Daniel Zeng and published by Springer Science & Business Media. This book was released on 2010-11-16 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on Infectious Disease Informatics (IDI) and biosurveillance is intended to provide an integrated view of the current state of the art, identify technical and policy challenges and opportunities, and promote cross-disciplinary research that takes advantage of novel methodology and what we have learned from innovative applications. This book also fills a systemic gap in the literature by emphasizing informatics driven perspectives (e.g., information system design, data standards, computational aspects of biosurveillance algorithms, and system evaluation). Finally, this book attempts to reach policy makers and practitioners through the clear and effective communication of recent research findings in the context of case studies in IDI and biosurveillance, providing “hands-on” in-depth opportunities to practitioners to increase their understanding of value, applicability, and limitations of technical solutions. This book collects the state of the art research and modern perspectives of distinguished individuals and research groups on cutting-edge IDI technical and policy research and its application in biosurveillance. The contributed chapters are grouped into three units. Unit I provides an overview of recent biosurveillance research while highlighting the relevant legal and policy structures in the context of IDI and biosurveillance ongoing activities. It also identifies IDI data sources while addressing information collection, sharing, and dissemination issues as well as ethical considerations. Unit II contains survey chapters on the types of surveillance methods used to analyze IDI data in the context of public health and bioterrorism. Specific computational techniques covered include: text mining, time series analysis, multiple data streams methods, ensembles of surveillance methods, spatial analysis and visualization, social network analysis, and agent-based simulation. Unit III examines IT and decision support for public health event response and bio-defense. Practical lessons learned in developing public health and biosurveillance systems, technology adoption, and syndromic surveillance for large events are discussed. The goal of this book is to provide an understandable interdisciplinary IDI and biosurveillance reference either used as a standalone textbook or reference for students, researchers, and practitioners in public health, veterinary medicine, biostatistics, information systems, computer science, and public administration and policy.

Book Mathematical Approaches for Emerging and Reemerging Infectious Diseases  An Introduction

Download or read book Mathematical Approaches for Emerging and Reemerging Infectious Diseases An Introduction written by Carlos Castillo-Chavez and published by Springer Science & Business Media. This book was released on 2002-05-02 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the discussions and presentations that began during the Workshop on Emerging and Reemerging Diseases (May 17-21, 1999) sponsored by the Institute for Mathematics and its Application (IMA) at the University of Minnesota with the support of NIH and NSF. The workshop started with a two-day tutorial session directed at ecologists, epidemiologists, immunologists, mathematicians, and scientists interested in the study of disease dynamics. The core of this first volume, Volume 125, covers tutorial and research contributions on the use of dynamical systems (deterministic discrete, delay, PDEs, and ODEs models) and stochastic models in disease dynamics. The volume includes the study of cancer, HIV, pertussis, and tuberculosis. Beginning graduate students in applied mathematics, scientists in the natural, social, or health sciences or mathematicians who want to enter the fields of mathematical and theoretical epidemiology will find this book useful.

Book Modeling Paradigms and Analysis of Disease Transmission Models

Download or read book Modeling Paradigms and Analysis of Disease Transmission Models written by Abba B. Gumel and published by American Mathematical Soc.. This book was released on 2010 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume stems from two DIMACS activities, the U.S.-Africa Advanced Study Institute and the DIMACS Workshop, both on Mathematical Modeling of Infectious Diseases in Africa, held in South Africa in the summer of 2007. It contains both tutorial papers and research papers. Students and researchers should find the papers on modeling and analyzing certain diseases currently affecting Africa very informative. In particular, they can learn basic principles of disease modeling and stability from the tutorial papers where continuous and discrete time models, optimal control, and stochastic features are introduced.