EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematical Model and Calendar Aging Study of Commercial Blended cathode Li ion Batteries

Download or read book Mathematical Model and Calendar Aging Study of Commercial Blended cathode Li ion Batteries written by Zhiyu Mao and published by . This book was released on 2016 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commercial blended-cathode Li-ion battery (LIB) systems has been dominating the burgeoning market for portable energy, ranging from consumer electronics to automotive applications. In order to successively improve the energy-power density and usage life of blended-cathode cells, an understanding in terms of the electrode design, electrochemical performance, and cell aging are necessary. A mathematical model based research approach is effective to quantitatively estimate all factors in the complicated system has been developed in this work, which will be beneficial for research and development of Lithium ion battery technology. In this thesis, a model based composition prediction technology for the of unknown commercial blended Li-ion battery cathodes is developed. It includes three steps of combined experimental and modeling methods. The electrochemically active constituents of the electrode are first determined by coupling information from low-rate galvanostatic lithiation data, and correlated with Scanning Electron Microscope (SEM) with Energy Dispersive X-Ray Analysis (EDX) analyses of the electrode. In the second step, the electrode composition is estimated using a physics based mathematical model of the electrode. The accuracy of this model based approach has been assessed by comparison of this electrode composition with the value obtained from an independent, non-electrochemical experimental technique involving the deconvolution of X-ray powder diffraction (XRD) spectra. Based on the prediction technology, the commercial LIB with the composition of LiNixMnyCo1-x-yO2 - LiMn2O4 (NMC-LMO=70:30 wt%) cathode was accurately delineated. Then, a physics based mathematical model, including the two dimensions of single particle and electrode levels, is developed to describe the electrochemical performance of the NMC-LMO blended cathode. The model features multiple particle sizes of the different active materials and incorporates three particle-size distributions: one size for the LMO particles, one size for the NMC primary and one size for NMC secondary particles which presumably are agglomerates of NMC primary particles. The good match between the simulated and experimental galvanostatic discharge and differential-capacity curves demonstrates that the assumption of secondary particles being nonporous (i.e., solid-state transport) is reasonable under the operating conditions of interest in this case up to 2C applied current. In the modeling, a thermodynamic expression for diffusive flux and some parameters such as the effective electronic conductivity have been described and measured. A sensitivity of the fitted model parameters including kinetic rate constants and solid-state diffusivities has been analyzed. Using the multi-particle model, the different Galvanostatic Intermittent Titration Technology (GITT) experiments with varying pulse currents and relaxation periods for a NMC-LMO blended lithium-ion electrode have been described. The good agreement between the simulated and experimental potential-time curves shows that the model is applicable for all GITT conditions considered, but is found to be more accurate for the case of small current pulse discharges with long relaxation times. Analysis of the current contribution and the solid-state surface concentration of each active component in the blended electrode shows a dynamic lithiation/delithiation interaction between the two components and between micron and submicron NMC particles during the relaxation periods in the GITT experiments. The interaction is attributed to the difference in the equilibrium potentials of the two components at any given stoichiometry which redistributes the lithium among LMO and NMC particles until a common equilibrium potential is reached. Moreover, the model can also be used to fit the galvanostatic charge curves from the rate of C/25 to 2C by adjusting model parameters. Through the comparative study with galvanostatic discharge experiment, the asymmetry of capacity contribution of each component during both charge and discharge, i.e., LMO contribution increases during discharging but decreases during charging when the C-rate is raised. Dynamic analysis of the blended cathode shows that this asymmetric charge/discharge behavior of the blended electrode can be attributed to the difference in the equilibrium potentials of the two components depending on Li concentration and electrode composition and to the difference in the rate of solid-state diffusion of Li and kinetics limitations in LMO and NMC. At last, a calendar life under various aging conditions has been studied, including analysis at various states of charge (SOC) i.e., 35°C-0% SOC, 58°C-0% SOC, 35°C-100% SOC and 58°C-100% SOC, for a commercial NMC-LMO/graphite blended lithium-ion battery. Through the analysis of post-mortem for the 280 days aged cell at 58°C-100% SOC with the remaining capacity of 55%, the loss of cycleable lithium is the predominant reason of capacity loss, which can lead to a passivation layer formation on the surface of graphite and gas generation. The fitting result of 'open circuit voltage (OCV)-model' indicates the about 40% active materials have not been utilized due to the lack of cycleable lithium and gas generation in the aged pouch cell. A non-destructive pressure-loading experiment has been implemented, which demonstrated a recovery of the capacity of the aged cell by 21%, and the reason of redistribution of gas bubbles under pressure inside the pouch cell has been described in detail.

Book Mathematical Modeling of Lithium Batteries

Download or read book Mathematical Modeling of Lithium Batteries written by Krishnan S. Hariharan and published by Springer. This book was released on 2017-12-28 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.

Book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Download or read book Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage written by Alejandro A. Franco and published by Springer. This book was released on 2015-11-12 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Book Batteries for Sustainability

Download or read book Batteries for Sustainability written by Ralph J. Brodd and published by Springer Science & Business Media. This book was released on 2012-12-12 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Batteries that can store electricity from solar and wind generation farms are a key component of a sustainable energy strategy. Featuring 15 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, this book presents a wide range of battery types and components, from nanocarbons for supercapacitors to lead acid battery systems and technology. Worldwide experts provides a snapshot-in-time of the state-of-the art in battery-related R&D, with a particular focus on rechargeable batteries. Such batteries can store electrical energy generated by renewable energy sources such as solar, wind, and hydropower installations with high efficiency and release it on demand. They are efficient, non-polluting, self-contained devices, and their components can be recovered and used to recreate battery systems. Coverage also highlights the significant efforts currently underway to adapt battery technology to power cars, trucks and buses in order to eliminate pollution from petroleum combustion. Written for an audience of undergraduate and graduate students, researchers, and industry experts, Batteries for Sustainability is an invaluable one-stop reference to this essential area of energy technology.

Book Lithium ion Batteries

    Book Details:
  • Author : Perla B. Balbuena
  • Publisher : World Scientific
  • Release : 2004
  • ISBN : 1860943624
  • Pages : 424 pages

Download or read book Lithium ion Batteries written by Perla B. Balbuena and published by World Scientific. This book was released on 2004 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.

Book Encyclopedia of Electrochemical Power Sources

Download or read book Encyclopedia of Electrochemical Power Sources written by Jürgen Garche and published by Newnes. This book was released on 2013-05-20 with total page 4532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Electrochemical Power Sources is a truly interdisciplinary reference for those working with batteries, fuel cells, electrolyzers, supercapacitors, and photo-electrochemical cells. With a focus on the environmental and economic impact of electrochemical power sources, this five-volume work consolidates coverage of the field and serves as an entry point to the literature for professionals and students alike. Covers the main types of power sources, including their operating principles, systems, materials, and applications Serves as a primary source of information for electrochemists, materials scientists, energy technologists, and engineers Incorporates nearly 350 articles, with timely coverage of such topics as environmental and sustainability considerations

Book Battery Management System and its Applications

Download or read book Battery Management System and its Applications written by Xiaojun Tan and published by John Wiley & Sons. This book was released on 2023-02-21 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: BATTERY MANAGEMENT SYSTEM AND ITS APPLICATIONS Enables readers to understand basic concepts, design, and implementation of battery management systems Battery Management System and its Applications is an all-in-one guide to basic concepts, design, and applications of battery management systems (BMS), featuring industrially relevant case studies with detailed analysis, and providing clear, concise descriptions of performance testing, battery modeling, functions, and topologies of BMS. In Battery Management System and its Applications, readers can expect to find information on: Core and basic concepts of BMS, to help readers establish a foundation of relevant knowledge before more advanced concepts are introduced Performance testing and battery modeling, to help readers fully understand Lithium-ion batteries Basic functions and topologies of BMS, with the aim of guiding readers to design simple BMS themselves Some advanced functions of BMS, drawing from the research achievements of the authors, who have significant experience in cross-industry research Featuring detailed case studies and industrial applications, Battery Management System and its Applications is a must-have resource for researchers and professionals working in energy technologies and power electronics, along with advanced undergraduate/postgraduate students majoring in vehicle engineering, power electronics, and automatic control.

Book Design and Analysis of Large Lithium Ion Battery Systems

Download or read book Design and Analysis of Large Lithium Ion Battery Systems written by Shriram Santhanagopalan and published by Artech House. This book was released on 2014-12-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Book Advances in Lithium Ion Batteries

Download or read book Advances in Lithium Ion Batteries written by Walter van Schalkwijk and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.

Book Handbook on Battery Energy Storage System

Download or read book Handbook on Battery Energy Storage System written by Asian Development Bank and published by Asian Development Bank. This book was released on 2018-12-01 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.

Book The Handbook of Lithium Ion Battery Pack Design

Download or read book The Handbook of Lithium Ion Battery Pack Design written by John T. Warner and published by Elsevier. This book was released on 2024-05-14 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?

Book Impedance Spectroscopy

    Book Details:
  • Author : Evgenij Barsoukov
  • Publisher : John Wiley & Sons
  • Release : 2018-03-22
  • ISBN : 1119333180
  • Pages : 1088 pages

Download or read book Impedance Spectroscopy written by Evgenij Barsoukov and published by John Wiley & Sons. This book was released on 2018-03-22 with total page 1088 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Essential Reference for the Field, Featuring Protocols, Analysis, Fundamentals, and the Latest Advances Impedance Spectroscopy: Theory, Experiment, and Applications provides a comprehensive reference for graduate students, researchers, and engineers working in electrochemistry, physical chemistry, and physics. Covering both fundamentals concepts and practical applications, this unique reference provides a level of understanding that allows immediate use of impedance spectroscopy methods. Step-by-step experiment protocols with analysis guidance lend immediate relevance to general principles, while extensive figures and equations aid in the understanding of complex concepts. Detailed discussion includes the best measurement methods and identifying sources of error, and theoretical considerations for modeling, equivalent circuits, and equations in the complex domain are provided for most subjects under investigation. Written by a team of expert contributors, this book provides a clear understanding of impedance spectroscopy in general as well as the essential skills needed to use it in specific applications. Extensively updated to reflect the field’s latest advances, this new Third Edition: Incorporates the latest research, and provides coverage of new areas in which impedance spectroscopy is gaining importance Discusses the application of impedance spectroscopy to viscoelastic rubbery materials and biological systems Explores impedance spectroscopy applications in electrochemistry, semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemical power sources Examines both the theoretical and practical aspects, and discusses when impedance spectroscopy is and is not the appropriate solution to an analysis problem Researchers and engineers will find value in the immediate practicality, while students will appreciate the hands-on approach to impedance spectroscopy methods. Retaining the reputation it has gained over years as a primary reference, Impedance Spectroscopy: Theory, Experiment, and Applications once again present a comprehensive reference reflecting the current state of the field.

Book Electrodes for Li ion Batteries

Download or read book Electrodes for Li ion Batteries written by Laure Monconduit and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical energy storage is a means to conserve electrical energy in chemical form. This form of storage benefits from the fact that these two energies share the same vector, the electron. This advantage allows us to limit the losses related to the conversion of energy from one form to another. The RS2E focuses its research on rechargeable electrochemical devices (or electrochemical storage) batteries and supercapacitors. The materials used in the electrodes are key components of lithium-ion batteries. Their nature depend battery performance in terms of mass and volume capacity, energy density, power, durability, safety, etc. This book deals with current and future positive and negative electrode materials covering aspects related to research new and better materials for future applications (related to renewable energy storage and transportation in particular), bringing light on the mechanisms of operation, aging and failure.

Book Engineering Energy Storage

Download or read book Engineering Energy Storage written by Odne Stokke Burheim and published by Academic Press. This book was released on 2017-07-26 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering Energy Storage explains the engineering concepts of different relevant energy technologies in a coherent manner, assessing underlying numerical material to evaluate energy, power, volume, weight and cost of new and existing energy storage systems. With numerical examples and problems with solutions, this fundamental reference on engineering principles gives guidance on energy storage devices, setting up energy system plans for smart grids. Designed for those in traditional fields of science and professional engineers in applied industries with projects related to energy and engineering, this book is an ideal resource on the topic. - Contains chapter based numerical examples, with applied industry problems and solutions - Assesses underlying numerical material for evaluating energy, power, volume, weight and cost of new and existing energy storage systems - Offers a cross-disciplinary look across electrical, mechanical and chemical engineering aspects of energy storage

Book Recycling of Lithium Ion Batteries

Download or read book Recycling of Lithium Ion Batteries written by Arno Kwade and published by Springer. This book was released on 2017-12-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.

Book Lithium ion Batteries

Download or read book Lithium ion Batteries written by and published by . This book was released on 2019 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.

Book Electrolytes for Lithium and Lithium Ion Batteries

Download or read book Electrolytes for Lithium and Lithium Ion Batteries written by T. Richard Jow and published by Springer. This book was released on 2014-05-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances. This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities. The book discusses in-depth the electrode-electrolyte interactions and interphasial chemistries that are key for the successful use of the electrolyte in practical devices. The Quantum Mechanical and Molecular Dynamical calculations that has proved to be so powerful in understanding and predicating behavior and properties of materials is also reviewed in this book. Electrolytes for Lithium and Lithium-ion Batteries is ideal for electrochemists, engineers, researchers interested in energy science and technology, material scientists, and physicists working on energy.