Download or read book Mathematical Methods in Quantum Mechanics written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2009 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Download or read book Mathematical Methods in Quantum Mechanics written by Gerald Teschl and published by . This book was released on 2009 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Concepts of Quantum Mechanics written by Stephen J. Gustafson and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Download or read book Mathematics of Classical and Quantum Physics written by Frederick W. Byron and published by Courier Corporation. This book was released on 2012-04-26 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Download or read book Mathematical Methods in Physics written by Philippe Blanchard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.
Download or read book Mathematical Methods of Quantum Optics written by Ravinder R. Puri and published by Springer. This book was released on 2012-11-02 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Download or read book Quantum Mechanics for Mathematicians written by Leon Armenovich Takhtadzhi͡an and published by American Mathematical Soc.. This book was released on 2008 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Download or read book Operator Methods in Quantum Mechanics written by Martin Schechter and published by Courier Corporation. This book was released on 2003-02-03 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with a simple quantum theory postulate, this text introduces mathematical techniques that help answer questions important to physical theory. The entire book is devoted to study of a particle moving in a straight line; students develop mathematical techniques by answering questions about the particle. 1981 edition.
Download or read book Mathematical Methods of Classical Mechanics written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Download or read book Mathematical Methods For Physics written by H. W. Wyld and published by CRC Press. This book was released on 2018-03-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.
Download or read book Mathematical Methods In Classical And Quantum Physics written by Tulsi Dass and published by Universities Press. This book was released on 1998 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to provide an adequate background for various theortical physics courses, especially those in classical mechanics, electrodynamics, quatum mechanics and statistical physics. Each topic is dealt with in a generally self-contained manner and the text is interspersed with a number of solved examples ad a large number of exercise problems.
Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Download or read book Mathematical Methods and Quantum Mathematics for Economics and Finance written by Belal Ehsan Baaquie and published by Springer Nature. This book was released on 2020-08-10 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given the rapid pace of development in economics and finance, a concise and up-to-date introduction to mathematical methods has become a prerequisite for all graduate students, even those not specializing in quantitative finance. This book offers an introductory text on mathematical methods for graduate students of economics and finance–and leading to the more advanced subject of quantum mathematics. The content is divided into five major sections: mathematical methods are covered in the first four sections, and can be taught in one semester. The book begins by focusing on the core subjects of linear algebra and calculus, before moving on to the more advanced topics of probability theory and stochastic calculus. Detailed derivations of the Black-Scholes and Merton equations are provided – in order to clarify the mathematical underpinnings of stochastic calculus. Each chapter of the first four sections includes a problem set, chiefly drawn from economics and finance. In turn, section five addresses quantum mathematics. The mathematical topics covered in the first four sections are sufficient for the study of quantum mathematics; Black-Scholes option theory and Merton’s theory of corporate debt are among topics analyzed using quantum mathematics.
Download or read book A Mathematical Primer on Quantum Mechanics written by Alessandro Teta and published by Springer. This book was released on 2018-04-17 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Download or read book Mathematical Methods of Many Body Quantum Field Theory written by Detlef Lehmann and published by CRC Press. This book was released on 2004-08-30 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theo
Download or read book The Mathematical Principles of Quantum Mechanics written by Derek F. Lawden and published by Courier Corporation. This book was released on 2005-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the principles of quantum mechanics, this text for upper-level undergraduates and graduate students introduces and resolves special physical problems with more than 100 exercises. 1967 edition.
Download or read book A Mathematical Companion to Quantum Mechanics written by Shlomo Sternberg and published by Courier Dover Publications. This book was released on 2019-03-20 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This original 2019 work, based on the author's many years of teaching at Harvard University, examines mathematical methods of value and importance to advanced undergraduates and graduate students studying quantum mechanics. Its intended audience is students of mathematics at the senor university level and beginning graduate students in mathematics and physics. Early chapters address such topics as the Fourier transform, the spectral theorem for bounded self-joint operators, and unbounded operators and semigroups. Subsequent topics include a discussion of Weyl's theorem on the essential spectrum and some of its applications, the Rayleigh-Ritz method, one-dimensional quantum mechanics, Ruelle's theorem, scattering theory, Huygens' principle, and many other subjects.