EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Material Design and Engineering for Polymer Electrolyte Membrane Zinc air Batteries

Download or read book Material Design and Engineering for Polymer Electrolyte Membrane Zinc air Batteries written by Jing Fu and published by . This book was released on 2018 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc-air batteries, whose advantages include relatively high energy density (1218 Wh kg-1), abundance of zinc in earth's crust, and very safe operational characteristics, are promising for applications in consumer electronics, electrified transportation, grid storage, and other fields. At the moment, primary zinc-air batteries are produced for low-drain electronic gadgets such as hearing aids. However, secondary (i.e., electrically rechargeable) zinc-air batteries have eluded widespread adoption due mainly to the slow reaction kinetics of oxygen evolution at the air electrode during recharge. A bifunctional oxygen electrocatalyst that can recharge the batteries more efficiently is required. Moreover, in the presence of aqueous alkaline electrolytes, zinc-air batteries suffer from low durability and performance loss due mainly to the formation of zinc dendrites during charging, the loss of aqueous electrolytes, the detachment of the catalyst layer and the precipitation of carbonates at the air electrode. These persistent issues have motivated a shift in electrolyte design towards efficient hydroxide ion-conductive polymeric electrolytes. A combination of efficient bifunctional oxygen electrocatalysts and polymeric electrolyte improvements may enable zinc-air batteries to be implemented in widespread applications in flexible/lightweight electronic devices and electric vehicles. In this work, I present a feasible strategy combining material innovations with engineering methods to develop a new type of zinc-air battery, i.e., a flexible, rechargeable polymer electrolyte membrane zinc-air battery (PEMZAB). In the first study, a proof of concept of a film-shaped, rechargeable PEMZAB was conducted by using a KOH-doped poly(vinyl alcohol) (PVA) gel electrolyte, porous zinc electrode and bifunctional air electrode comprising a commercial Co3O4 nanoparticles-loaded carbon cloth. Then, a novel hydroxide ion-conductive polymeric electrolyte membrane and an efficient bifunctional oxygen zinc-air battery performance. Specifically, highly quaternaized cellulose nanofibers were synthesized to produce a hydroxide ion-conductive electrolyte membrane (referred to as QAFC). The QAFC membrane shows advantages of a high ionic conductivity of 21.2 mS cm-1, good chemical stability, mechanical robustness and flexibility, and inhibition of zinc dendrites and carbonations. In addition to the QAFC electrolyte membrane development, a hybrid bifunctional oxygen electrocatalyst, consisting of cobalt oxysulfide nanoparticles and nitrogen-doped graphene nanomeshes (CoO0.87S0.13/GN), was prepared. The defect chemistries of both oxygen-vacancy-rich cobalt oxysulfides and edge-nitrogen-rich graphene nanomeshes lead to a remarkable improvement in electrocatalytic performance, where CoO0.87S0.13/GN exhibits strongly comparable catalytic activity and much better stability than the best-known benchmark noble metal catalysts. A simple, water-based filtration method for a direct assembly of the QAFC membrane and the CoO0.87S0.13/GN catalyst film was demonstrated with the PEMZAB. Such a fabrication approach enables intimate contact between the solid-solid catalyst-electrolyte interfaces for facile charge transfer. Moreover, benefiting from the performance improvement of the QAFC electrolyte membrane and the CoO0.87S0.13/GN bifunctional catalyst, the resulting battery possesses a higher energy density of 857.9 Wh kg-1 and a more stable cycling performance, over 300 hours of operation at 20 mA cm-2 under ambient conditions, than those of a battery using PVA-KOH gel electrolyte and commercial Co3O4 bifunctional catalysts. In the last study, the knowledge gained from the hybrid CoO0.87S0.13/GN bifunctional catalyst is transferred to the fabrication of a hybrid catalyst/current collector assembly for the bifunctional air electrode. In this assembly, a hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh through chemical vapor deposition and electrodeposition methods. Such integrative design not only ensures a large number of catalytically active sites in a given electrode surface, but also increases the electron transfer between each individual catalyst and the conductive substrate. This advanced air electrode assembly further boosts the PEMZAB performance, with a high peak power density of 160.7 mW cm-2 at 250 mA cm-2 and a remarkable cycling durability: lasting over 600 hours of operation at 25 mA cm-2 under ambient conditions.

Book Zinc Air Batteries

Download or read book Zinc Air Batteries written by Zongping Shao and published by John Wiley & Sons. This book was released on 2023-01-04 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc–Air Batteries Authoritative and comprehensive resource covering foundational knowledge of zinc–air batteries as well as their practical applications Zinc–Air Batteries provides a comprehensive understanding of the history and development of Zn–air batteries, with a systematic overview of components, design, and device innovation, along with recent advances in the field, especially with regards to the cathode catalyst design made by cutting-edge materials, engineering processes, and technologies. In particular, design principles regarding the key components of Zn–air batteries, ranging from air cathode, to zinc anode, and to electrolyte, are emphasized. Furthermore, industrial developments of Zn–air batteries are discussed and emerging new designs of Zn–air batteries are also introduced. The authors argue that designing advanced Zn–air battery technologies is important to the realization of efficient energy storage and conversion—and, going further, eventually holds the key to a sustainable energy future and a carbon-neutral goal. Edited and contributed to by leading professionals and researchers in the field, Zinc–Air Batteries also contains information regarding: Design of oxygen reduction catalysts in primary zinc–air batteries, including precious metals, single-atoms, carbons, and transition metal oxides Design of bifunctional oxygen catalysts in rechargeable zinc–air batteries, covering specific oxygen redox reactions and catalyst candidates Design of three-dimensional air cathode in zinc–air batteries, covering loading of carbon-based and transition metal catalysts, plus design of the three-phase interface Design of electrolyte for zinc–air batteries, including liquid electrolytes (e.g., alkaline) and gel polymer electrolytes (e.g., PVA hydrogel) For students, researchers, and instructors working in battery technologies, materials science, and electrochemistry, and for industry and government representatives for decision making associated with energy and transportation, Zinc–Air Batteries summarizes the research results on Zn–air batteries and thereby helps researchers and developers to implement the technology in practice.

Book Advanced Materials for Battery Separators

Download or read book Advanced Materials for Battery Separators written by Sabu Thomas and published by Elsevier. This book was released on 2024-07-01 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Materials for Battery Separators focuses solely on battery separators and their significance, providing the reader with a detailed description of their use in both aqueous and non-aqueous batteries. Topics include separator requirements and classifications, as well as discussions of the different methods for the fabrication of separators, experimental techniques used for the characterization of separators, and their physical and chemical properties. It concludes with a look at the challenges and new technologies developed to improve the performance of separators. This book is a valuable reference for engineers, research scholars, and for graduates and post graduates primarily in the field of material science, electrochemistry, and polymer chemistry. It can also be useful for engineers and technologists working in both industry and the energy field. Provides a detailed discussion of separators used in battery applications Discusses the influence of nanofillers on separator performance and the analytical techniques used for the characterization of separators Explores the challenges and new technologies to improve the performance of separators

Book Materials Design and Engineering for High Energy Density Rechargeable Zinc air Batteries

Download or read book Materials Design and Engineering for High Energy Density Rechargeable Zinc air Batteries written by Hua Zhang and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing demands for energy and the associated environmental pollution have sparked a great deal of interest in the development of clean energy technologies including fuel cells, metal-air batteries, supercapacitors, and hydrogen production. Among them, Zinc-air batteries (ZABs) are potential possibilities because of their low cost, high theoretical energy density, high-level safety, and environmental friendliness. In addition, zinc (Zn) is abundant in the environment and far less expensive than lithium metals. Thus, ZABs have been proposed as promising energy sources for grid-scale ener...

Book Designing Electrolytes for Lithium Ion and Post Lithium Batteries

Download or read book Designing Electrolytes for Lithium Ion and Post Lithium Batteries written by Władysław Wieczorek and published by CRC Press. This book was released on 2021-06-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every electrochemical source of electric current is composed of two electrodes with an electrolyte in between. Since storage capacity depends predominantly on the composition and design of the electrodes, most research and development efforts have been focused on them. Considerably less attention has been paid to the electrolyte, a battery’s basic component. This book fills this gap and shines more light on the role of electrolytes in modern batteries. Today, limitations in lithium-ion batteries result from non-optimal properties of commercial electrolytes as well as scientific and engineering challenges related to novel electrolytes for improved lithium-ion as well as future post-lithium batteries.

Book Ion and Molecule Transport in Membrane Systems

Download or read book Ion and Molecule Transport in Membrane Systems written by Victor Nikonenko and published by MDPI. This book was released on 2021-08-10 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Membranes play an enormous role in our life. Biological cell membranes control the fluxes of substances in and out of cells. Artificial membranes are widely used in numerous applications including “green” separation processes in chemistry, agroindustry, biology, medicine; they are used as well in energy generation from renewable sources. They largely mimic the structure and functions of biological membranes. The similarity in the structure leads to the similarity in the properties and the approaches to study the laws governing the behavior of both biological and artificial membranes. In this book, some physico-chemical and chemico-physical aspects of the structure and behavior of biological and artificial membranes are investigated.

Book Zinc Air Batteries

    Book Details:
  • Author : Shengjie Peng
  • Publisher : Springer Nature
  • Release : 2023-01-01
  • ISBN : 9811982147
  • Pages : 220 pages

Download or read book Zinc Air Batteries written by Shengjie Peng and published by Springer Nature. This book was released on 2023-01-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to discuss the cutting-edge materials and technologies for zinc-air batteries. From the perspective of basic research and engineering application, the principle innovation, research progress, and technical breakthrough of key materials such as positive and negative electrodes, electrolytes, and separators of zinc-air batteries are discussed systematically, which can be used to guide and promote the development of zinc-air battery technology. We do believe that our experiences and in-depth discussions would make this book useful for researchers at all levels in the energy area and provide them with a quick way of understanding the development of zinc-air batteries.

Book Aqueous Zinc Ion Batteries

Download or read book Aqueous Zinc Ion Batteries written by Haiyan Wang and published by John Wiley & Sons. This book was released on 2024-07-29 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aqueous Zinc Ion Batteries Pioneering reference book providing the latest developments and experimental results of aqueous zinc ion batteries Aqueous Zinc Ion Batteries comprehensively reviews latest advances in aqueous zinc ion batteries and clarifies the relationships between issues and solutions for the emerging battery technology. Starting with the history, the text covers essentials of each component of aqueous zinc ion batteries, including cathodes, anodes, and electrolytes, helping readers quickly attain a foundational understanding of the subject. Written by three highly qualified authors with significant experience in the field, Aqueous Zinc Ion Batteries provides in-depth coverage of sample topics such as: History, main challenges, and zinc metal anodes for aqueous zinc ion batteries Electrochemical reaction mechanism of aqueous zinc ion batteries and interfacial plating and stripping on zinc anodes Cathode materials for aqueous zinc ion batteries, covering manganese-based materials, vanadium-based materials, Prussian blue analogs, and other cathode materials Development of electrolytes, issues, and corresponding solutions for aqueous zinc ion batteries Separators for aqueous zinc ion batteries, development of full zinc ion batteries, and future perspectives on the technology A detailed resource on a promising alternative to current lithium-ion battery systems, Aqueous Zinc Ion Batteries is an essential read for materials scientists, electrochemists, inorganic chemists, surface chemists, catalytic chemists, and surface physicists who want to be on the cutting edge of a promising new type of battery technology.

Book Nanostructured Materials Engineering and Characterization for Battery Applications

Download or read book Nanostructured Materials Engineering and Characterization for Battery Applications written by Amadou Belal Gueye and published by Elsevier. This book was released on 2024-06-28 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology. Presents practical consideration for battery usage such as LCA, recycling and green batteries Covers battery characterization techniques including electrochemical methods, microscopy, spectroscopy and X-ray methods Explores battery models and computational materials design theories

Book Novel Polymer Electrolyte Membranes for Nickel zinc Battery

Download or read book Novel Polymer Electrolyte Membranes for Nickel zinc Battery written by Cheng Qu (Polymer engineer) and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ni-Zn rechargeable battery has attracted increasing interest due to its high energy density, low cost and safety. However, the short battery life due to battery short-circuit which results from Zn dendrite growth highly limits its utility. In this dissertation, fiber reinforced polymer electrolyte membranes with dendrite inhibiting fillers are produced by embedding nanofibers into polyacrylic acid (PAA)/clay membranes, and the membranes are used in Ni-Zn battery to solve the Zn dendrite growth problem.The nanofibers are produced by electrospinning. Polyvinylidene fluoride (PVDF) and nylon MXD6 electrospun fiber mats with different morphologies (fused, bonded and separated) are obtained by adjusting electrospinning conditions (target distance, applied voltage, nozzle pressure, solution concentration, etc.). Morphology observation of the electrospun fiber mat during uniaxial stretching reveals that interfiber bonds transfer tensile loads and induce deformation resulting in higher mechanical properties.The fiber content and mechanical properties of the fiber reinforced electrolyte membrane depend on interfiber bonding. In the membrane, interfiber bonds hold fibers together against gel swelling, leading to the formation of inter-bonded fiber network and high fiber content enhancing overall mechanical properties of the membrane. Though, with the inter-bonded fiber network in the membrane, high tensile strength and high strain at break are achieved, the ionic conductivity is found to decrease due to the increased membrane tortuosity.By incorporating the electrospun fiber mat with optimum structure for balanced mechanical strength and ionic conductivity, novel polymer electrolyte membranes, including PVDF and MXD6 nanofiber reinforced PAA membranes, PAA/nanofiber/clay hybrid membrane and multilayer membrane are prepared, and battery testing is conducted. The results show that the electrospun fiber mat in the membrane effectively suppresses Zn dendrite growth, and thinner fibers have better dendrite inhibition capability. Exfoliated clay platelets in the nanofiber reinforced membranes could further block the growth of nano-sized Zn dendrites and significantly extend the battery life as they act as "shields" normal to the direction of Zn dendrite growths. The PAA/9vol% MXD6-fiber/3.8vol% clay hybrid membrane with the thickness of 200[micron]m is proved to be the best polymer electrolyte membrane for Ni-Zn battery in this dissertation exceeding the 450 charge/discharge cycle requirements of a typical commercial battery application.

Book Metal Air Batteries

    Book Details:
  • Author : Ram K. Gupta
  • Publisher : CRC Press
  • Release : 2023-04-18
  • ISBN : 1000856089
  • Pages : 393 pages

Download or read book Metal Air Batteries written by Ram K. Gupta and published by CRC Press. This book was released on 2023-04-18 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-Air Batteries: Principles, Progress, and Perspectives covers the entire spectrum of metal-air batteries, their working principles, recent advancement, and future perspectives. Leading international researchers address materials design, electrochemistry, and architectural aspects. The fundamentals of metal-air materials for cathode and anode, their synthetic approaches, chemistries to modify their properties to provide high energy and power densities, along with long life and stable electrochemical characteristics are detailed. Key Features: Covers materials, chemistry, and technologies for metal-air batteries Reviews state-of-the-art progress and challenges in metal-air batteries Provides fundamentals of the electrochemical behavior of various metal-air batteries Offers insight into tuning the properties of materials to make them suitable for metal-air batteries Provides new direction and a better understanding to scientists, researchers, and students working in diverse fields This is a unique offering and a valuable resource for a wide range of readers including those in academia and industries worldwide.

Book Advanced Nanostructured Electrode and Materials Design for Zinc Air Batteries

Download or read book Advanced Nanostructured Electrode and Materials Design for Zinc Air Batteries written by Jordan Scott and published by . This book was released on 2013 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc air batteries have great promise as a new age energy storage device due to their environmental benignity, high energy density in terms of both mass and volume, and low cost Zinc air batteries get their high energy density by using oxygen from the air as the active material. This means that all the mass and volume that are normally required for active material in a battery are replaced by a thin gas diffusion electrode which allows for oxygen from the air to diffuse into the cell. Although this seems ideal, there are many technical challenges associated with the cell being open to the atmosphere. Some of these issues include electrolyte and electrode drying out, poor reaction kinetics involving sluggish reaction, the need for bifunctional catalysts to charge and discharge, and durability of the gas diffusion electrode itself. The bifuntional catalysts used in these systems are often platinum or other precious metals since these are commonly known to have the highest performance, however the inherent cost of these materials limits the feasibility of zinc air systems. Thus, there is a need to limit or remove the necessity for platinum carbon catalysts. There are many types of non precious metal catalysts which can be used in place of platinum, however their performance is often not as high, and the durability of these catalysts is also weak. Similar limitations on feasibility are invoked by the poor durability of the gas diffusion electrodes. Carbon corrosion occurs at the harsh caustic conditions present at the gas diffusion electrodes, and this corrosion causes catalyst dissolution. Moreover, many issues with zinc electrode fabrication limit durability and usable anode surface area within these systems. There is a need for a stable, porous, high surface area anode with good structural integrity. These issues are addressed in this work by three studies which each focuses on solving some of the issues pertaining to a crucial component of zinc air batteries, those being the gas diffusion electrode, the zinc electrode, and the bifunctional catalyst necessary for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER).

Book Zinc Air Batteries

Download or read book Zinc Air Batteries written by Zongping Shao and published by John Wiley & Sons. This book was released on 2023-01-04 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc–Air Batteries Authoritative and comprehensive resource covering foundational knowledge of zinc–air batteries as well as their practical applications Zinc–Air Batteries provides a comprehensive understanding of the history and development of Zn–air batteries, with a systematic overview of components, design, and device innovation, along with recent advances in the field, especially with regards to the cathode catalyst design made by cutting-edge materials, engineering processes, and technologies. In particular, design principles regarding the key components of Zn–air batteries, ranging from air cathode, to zinc anode, and to electrolyte, are emphasized. Furthermore, industrial developments of Zn–air batteries are discussed and emerging new designs of Zn–air batteries are also introduced. The authors argue that designing advanced Zn–air battery technologies is important to the realization of efficient energy storage and conversion—and, going further, eventually holds the key to a sustainable energy future and a carbon-neutral goal. Edited and contributed to by leading professionals and researchers in the field, Zinc–Air Batteries also contains information regarding: Design of oxygen reduction catalysts in primary zinc–air batteries, including precious metals, single-atoms, carbons, and transition metal oxides Design of bifunctional oxygen catalysts in rechargeable zinc–air batteries, covering specific oxygen redox reactions and catalyst candidates Design of three-dimensional air cathode in zinc–air batteries, covering loading of carbon-based and transition metal catalysts, plus design of the three-phase interface Design of electrolyte for zinc–air batteries, including liquid electrolytes (e.g., alkaline) and gel polymer electrolytes (e.g., PVA hydrogel) For students, researchers, and instructors working in battery technologies, materials science, and electrochemistry, and for industry and government representatives for decision making associated with energy and transportation, Zinc–Air Batteries summarizes the research results on Zn–air batteries and thereby helps researchers and developers to implement the technology in practice.

Book Electrolyte Design and Engineering for Electrochemical Energy System

Download or read book Electrolyte Design and Engineering for Electrochemical Energy System written by Jing Zhang and published by . This book was released on 2019 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical energy conversion and storage technology is considered as a promising replacement of fossil fuels to directly convert the chemical energy to electrical energy through electrochemical reactions, which has environmental-benign emissions and excellent operational efficiencies. As key components of an electrochemical device, both electrode and electrolyte will have substantial effects on the performance of an electrochemical energy conversion and storage system. While there have been many research and development concerning electrode materials, the investigations focusing on electrolyte are rather limited. It is worth noticing that the design and preparation of an ideal electrolyte is very necessary, as it plays a critical role in establishing important properties of an electrochemical energy conversion and storage system including internal resistance, thermal stability, power density, energy density, cycle life, and so on. In this thesis, electrolytes are divided into two types by physical properties, which are liquid electrolyte and solid-state electrolyte. Liquid electrolyte can be further grouped into aqueous and non-aqueous ones based on different solvent utilization, while solid electrolyte can be further separated into all-solid-state and quasi-solid-state electrolytes. Overall, the development of electrolytes is moving from liquid towards solid electrolytes with the rapid growing demand of flexible, foldable, portable, micro and wearable electrochemical devices. In this work, a novel strategy towards hybrid aqueous electrolyte was firstly put forward for an all-aqueous redox flow battery with unprecedented high energy density.Theoretically, the electrolyte acidic/basic properties have a great influence on redox pair potential. By tuning the pH of electrolyte, the battery voltage can be effectively enhanced, finally leading to an increase in energy density. Inspired by this concept, an all-aqueous hybrid alkaline zinc/iodine flow battery is designed and demonstrated with a 0.47 V battery potential enhancement compared to the conventional counterpart. Also, a high-energy-density of 330.5 Wh L-1 was achieved for this all-aqueous hybrid alkaline zinc/iodine flow battery. It is an unprecedented record for an all-aqueous redox flow battery obtained to date, which is even 1.6 times of the highest reported energy density value. Overall, this hybrid alkaline zinc/iodine system demonstrates a new design with promising performance for an all-aqueous redox flow battery, and more importantly, opens a feasible and effective approach for achieving high-voltage high-energy-density all-aqueous electrochemical energy device. After that, I present a functionalized nanocellulose-based membrane with a laminated structure to be used as a hydroxide-conducting solid-state electrolyte. The introduced functional groups in the nanocellulose significantly boost the hydroxide conductivity (e.g., 58.8 mS cm-1 at 70oC) due to the enhanced ion-exchange capacity and the increased amorphousness of the membrane. Meanwhile, a cross-linking bonding network is formed between the functionalized graphene oxide and nanocellulose, providing the membrane with a superior mechanical property and excellent water retention. The battery using the novel membrane exhibited superior rechargeability and performance stability compared to the commercial A201 membrane. An excellent output power density was achieved when the flexible zinc-air battery was under stress at different bending angles. This novel membrane will pave the way for future research in the field of flexible energy storage devices, particularly for emerging portable and flexible electronic applications. In the last study, a functionalized graphene oxide-based membrane with three-dimensional interpenetrating structure was fabricated through a green, efficient and scalable approach. This membrane is used as a proton-conducting solid-state electrolyte in an electrochemical fuel cell gas sensor for the detection of alcohol. The graphene oxide nanosheets are inserted into the whole membrane fibrous skeleton, creating impermeable barrier layers to prevent ethanol gas penetration. The introduced functional groups in the graphene oxide significantly boost the proton conductivity due to the enhanced ion-exchange capacity. Importantly, the modification of graphene oxide facilitates the protons transportation in both in-plane and through-plane channels of the membrane. An alcohol fuel cell sensor equipped with the novel electrolyte membrane was fabricated on the basis of direct ethanol fuel cell principle, exhibiting excellent linearity, sensitivity as well as low ethanol detection limits approaching 25 ppm. This work will pave the way for future research in the field of electrochemical gas sensors as well as the graphene oxide utilization in gas detection application. In summary, this thesis focuses on the development of electrolytes, including aqueous-based hybrid electrolyte as well as functionalized nanocellulose and graphene oxide based solid electrolytes. Several applications are demonstrated with the presented electrolytes materials, paving the way for future electrolyte research in high-energy-density or flexible wearable electrochemical energy and storage systems.

Book Engineering Design and Optimisation of a Planar Polymer Electrolyte Membrane Fuel Cell Through Computational  Techno economic and Experimental Analysis

Download or read book Engineering Design and Optimisation of a Planar Polymer Electrolyte Membrane Fuel Cell Through Computational Techno economic and Experimental Analysis written by Flora Ashley Daniels and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Bifunctional Electrochemical Catalysts for Metal Air Batteries

Download or read book Advanced Bifunctional Electrochemical Catalysts for Metal Air Batteries written by Yan-Jie Wang and published by CRC Press. This book was released on 2018-12-14 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-air batteries (MABs) have attracted attention because of their high specific energy, low cost, and safety features. This book discusses science and technology including material selection, synthesis, characterization, and their applications in MABs. It comprehensively describes various composite bifunctional electrocatalysts, corrosion/oxidation of carbon-containing air cathode catalysts, and how improvements can be achieved in the catalytic activities of oxygen reduction reaction and oxygen evolution reaction and their durability/stability. This book also analyzes, compares, and discusses composite bifunctional electrocatalysts in the applications of MABs, matching the fast information of commercial MABs in requirements. Aimed at researchers and industry professionals, this comprehensive work provides readers with an appreciation for what bifunctional composite electrocatalysts are capable of, how this field has grown in the past decades, and how bifunctional composite electrocatalysts can significantly improve the performance of MABs. It also offers suggestions for future research directions to overcome technical challenges and further facilitate research and development in this important area.