Download or read book Mastering AI and Generative AI From Learning Fundamentals to Advanced Applications written by Anand Vemula and published by Anand Vemula. This book was released on with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide dives into the fascinating world of Artificial Intelligence (AI) and its cutting-edge subfield, Generative AI. Designed for beginners and enthusiasts alike, it equips you with the knowledge and skills to navigate the complexities of machine learning and unlock the power of AI for advanced applications. Building a Strong Foundation The journey begins with mastering the fundamentals. You'll explore the different approaches to AI, delve into the history of this revolutionary field, and gain a solid understanding of various subfields like Machine Learning, Deep Learning, Natural Language Processing, and Computer Vision. Delving into Machine Learning Machine learning, the core of AI's learning ability, takes center stage. You'll grasp the difference between supervised and unsupervised learning paradigms, discover popular algorithms like decision trees and neural networks, and learn the importance of data preparation for optimal model performance. Evaluation metrics become your tools to measure how effectively your models are learning. Unveiling the Power of Deep Learning Get ready to explore the intricate world of Deep Learning, a powerful subset of machine learning inspired by the human brain. Demystify neural networks, the building blocks of deep learning, and dive into specialized architectures like Convolutional Neural Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for handling sequential data. Deep learning frameworks become your allies, simplifying the process of building and deploying complex deep learning models. The Art of Machine Creation: Generative AI The book then shifts its focus to the transformative realm of Generative AI. Here, machines not only learn but create entirely new data. Explore different types of generative models, from autoregressive models to variational autoencoders, and witness their applications in text generation, image synthesis, and even music creation. A Deep Dive into Generative Adversarial Networks (GANs) Among generative models, Generative Adversarial Networks (GANs) have captured the imagination of researchers and the public alike. This chapter delves into the intriguing concept of GANs, where a generator model continuously strives to create realistic data while a discriminator model acts as a critic, ensuring the generated data is indistinguishable from real data. You'll explore the training process, the challenges of taming GANs, and best practices for achieving optimal results. Advanced Applications Across Domains The book then showcases the transformative potential of Generative AI across various domains. Witness the power of text generation with RNNs, explore the ethical considerations surrounding deepfakes, and discover how chatbots are revolutionizing communication. In the visual realm, delve into Deep Dream and Neural Style Transfer algorithms, and witness the creation of realistic images and videos with cutting-edge generative models. Mastering AI and Generative AI empowers you to not only understand these revolutionary technologies but also leverage them for advanced applications. As you embark on this journey, be prepared to unlock the boundless potential of machine creation and shape the future of AI.
Download or read book Artificial Intelligence and Machine Learning Fundamentals written by Zsolt Nagy and published by Packt Publishing Ltd. This book was released on 2018-12-12 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Download or read book Artificial Intelligence Simplified written by Binto George and published by CSTrends LLP. This book was released on 2016-01-08 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book introduces key Artificial Intelligence (AI) concepts in an easy-to-read format with examples and illustrations. A complex, long, overly mathematical textbook does not always serve the purpose of conveying the basic AI concepts to most people. Someone with basic knowledge in Computer Science can have a quick overview of AI (heuristic searches, genetic algorithms, expert systems, game trees, fuzzy expert systems, natural language processing, super intelligence, etc.) with everyday examples. If you are taking a basic AI course and find the traditional AI textbooks intimidating, you may choose this as a “bridge” book, or as an introductory textbook. For students, there is a lower priced edition (ISBN 978-1944708016) of the same book. Published by CSTrends LLP.
Download or read book Modern Computer Vision with PyTorch written by V Kishore Ayyadevara and published by Packt Publishing Ltd. This book was released on 2024-06-10 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.
Download or read book Generative Ai A Comprehensive Guide to Mastering Generative Ai Understanding the Essentials and Applications of This Breakthrough Technology written by Donald Brewer and published by Donald Brewer. This book was released on 101-01-01 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book also delves into the ethical considerations and challenges associated with implementing generative ai, providing readers with a balanced perspective on its impact on society and the workforce. By exploring the role of leadership in harnessing generative ai for organizational success, readers will gain valuable insights into how to navigate this rapidly evolving landscape. Whether you're a business leader seeking to unlock the potential of generative ai for your organization or a technology enthusiast eager to explore its applications across industries, this book offers a comprehensive overview of one of the most exciting developments in artificial intelligence today. You will unravel valuable insights: • A deep dive into the ethical frameworks needed for responsible ai deployment in your organization • Actionable tips to integrate ai seamlessly into your existing workflow • Unparalleled case studies from businesses that have successfully tapped into the ai advantage • A toolkit to leverage competitive intelligence insights through ai • A crystal-clear demystification of common misconceptions surrounding ai • A practical ai vocabulary that every business leader should know In this book, i will provide you with a comprehensive overview of generative ai, including the underlying principles and the latest trends in the field. I will also show you how to apply generative ai to a variety of tasks and applications in your business as well as various other industries responsibly and safely. One of the key benefits of generative ai is its ability to learn from massive realms of data and generate new, unseen data.
Download or read book Mastering Deep Learning From Basics to Advanced Techniques written by Dr.M.Kasthuri and published by SK Research Group of Companies. This book was released on 2024-07-10 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr.M.Kasthuri, Associate Professor, Department of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India. Mrs.K.Kalaiselvi, Guest Lecturer, Department of Computer Science, Thanthai Periyar Government Arts and Science College, Tiruchirappalli, Tamil Nadu, India.
Download or read book Mastering AI model training written by Cybellium Ltd and published by Cybellium Ltd. This book was released on 2023-09-05 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you ready to take your AI training skills to the next level? In "Mastering AI Model Training" by Kris Hermans, you'll embark on a transformative journey that will empower you to train highly accurate and efficient artificial intelligence models. Uncover Advanced Techniques and Best Practices As AI continues to revolutionize industries, the ability to train powerful and optimized models is paramount. In this comprehensive guide, Kris Hermans reveals the secrets to mastering AI model training. Explore advanced techniques, cutting-edge algorithms, and industry best practices that will propel your AI training expertise to new heights. Become an Expert in Training AI Models Whether you're a seasoned data scientist or a passionate AI enthusiast, this book provides a structured approach to mastering AI model training. Kris Hermans demystifies complex concepts and presents them in a clear and practical manner. Through real-world examples and hands-on exercises, you'll develop the skills and intuition necessary to train AI models that achieve exceptional performance. From Fundamentals to Advanced Topics "Mastering AI Model Training" covers the full spectrum of AI training, starting from the basics of data preprocessing and feature engineering and progressing to advanced topics such as transfer learning, hyperparameter optimization, and model compression. Gain a deep understanding of different training algorithms and architectures, and learn how to adapt them to various domains and use cases. Optimize Training for Performance and Efficiency Discover strategies for improving model performance, reducing training time, and optimizing resource utilization. Explore techniques for handling large datasets, distributed training, and leveraging hardware accelerators such as GPUs and TPUs. With Kris Hermans as your guide, you'll learn how to train models that deliver superior results while maximizing computational efficiency. Practical Applications and Real-World Case Studies Immerse yourself in practical applications of AI model training across industries such as healthcare, finance, manufacturing, and more. Dive into captivating case studies that demonstrate how AI training is transforming businesses and driving innovation. Gain insights into the challenges faced by organizations and learn how they leverage AI training techniques to gain a competitive edge. Ethical Considerations and Responsible AI With great power comes great responsibility. "Mastering AI Model Training" addresses the ethical considerations associated with AI training and highlights the importance of responsible AI practices. Learn how to mitigate biases, ensure fairness, and navigate ethical challenges to build AI models that are not only accurate and efficient but also ethical and trustworthy.
Download or read book Mastering Deep Learning with TensorFlow From Fundamentals to Real World Deployment written by Peter Jones and published by Walzone Press. This book was released on 2024-10-11 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.
Download or read book Neural Network Programming written by Rob Botwright and published by Rob Botwright. This book was released on 101-01-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the Power of AI with Our Neural Network Programming Book Bundle Are you ready to embark on a journey into the exciting world of artificial intelligence? Do you dream of mastering the skills needed to create cutting-edge AI systems that can revolutionize industries and change the future? Look no further than our comprehensive book bundle, "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Why Choose Our Book Bundle? In this era of technological advancement, artificial intelligence is at the forefront of innovation. Neural networks, a subset of AI, are driving breakthroughs in fields as diverse as healthcare, finance, and autonomous vehicles. To harness the full potential of AI, you need knowledge and expertise. That's where our book bundle comes in. What You'll Gain · Book 1 - Neural Network Programming for Beginners: If you're new to AI, this book is your perfect starting point. Learn Python, TensorFlow, and Keras from scratch and build your first AI systems. Lay the foundation for a rewarding journey into AI development. · Book 2 - Advanced Neural Network Programming: Ready to take your skills to the next level? Dive deep into advanced techniques, fine-tune models, and explore real-world applications. Master the intricacies of TensorFlow and Keras to tackle complex AI challenges. · Book 3 - Neural Network Programming: Beyond the Basics: Discover the world beyond fundamentals. Explore advanced concepts and cutting-edge architectures like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). Be prepared to innovate in AI research and development. · Book 4 - Expert Neural Network Programming: Elevate yourself to expert status. Dive into quantum neural networks, ethical AI, model deployment, and the future of AI research. Push the boundaries of AI development with advanced Python, TensorFlow, and Keras techniques. Who Is This Bundle For? · Aspiring AI Enthusiasts: If you're new to AI but eager to learn, our bundle offers a gentle and structured introduction. · Seasoned Developers: Professionals seeking to master AI development will find advanced techniques and real-world applications. · Researchers: Dive into cutting-edge AI research and contribute to the forefront of innovation. Why Us? Our book bundle is meticulously crafted by experts with a passion for AI. We offer a clear, step-by-step approach, ensuring that learners of all backgrounds can benefit. With hands-on projects, real-world applications, and a focus on both theory and practice, our bundle equips you with the skills and knowledge needed to succeed in the ever-evolving world of AI. Don't miss this opportunity to unlock the power of AI. Invest in your future today with "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Start your journey into the exciting world of artificial intelligence now!
Download or read book Mastering Generative Adversarial Networks From Basics to Advanced Applications written by Nagaram Ramesh and published by SGSH Publications. This book was released on 2024-08-11 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mastering Generative Adversarial Networks From Basics to Advanced Applications offers a thorough examination of Generative Adversarial Networks (GANs), covering their theoretical foundations, architectural innovations, and practical applications. This book delves into the original GAN model, its evolution, and the mathematical frameworks that support it, while also exploring cutting-edge variants and real-world use cases. Authored by Nagaram Ramesh and V. Bhargavi, it provides a crucial resource for academics, researchers, and practitioners aiming to deepen their understanding and effectively implement GAN technologies.
Download or read book Generative Deep Learning with Python written by Cuantum Technologies LLC and published by Packt Publishing Ltd. This book was released on 2024-06-12 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dive into the world of Generative Deep Learning with Python, mastering GANs, VAEs, & autoregressive models through projects & advanced topics. Gain practical skills & theoretical knowledge to create groundbreaking AI applications. Key Features Comprehensive coverage of deep learning and generative models. In-depth exploration of GANs, VAEs, & autoregressive models & advanced topics in generative AI. Practical coding exercises & interactive assignments to build your own generative models. Book DescriptionGenerative Deep Learning with Python opens the door to the fascinating world of AI where machines create. This course begins with an introduction to deep learning, establishing the essential concepts and techniques. You will then delve into generative models, exploring their theoretical foundations and practical applications. As you progress, you will gain a deep understanding of Generative Adversarial Networks (GANs), learning how they function and how to implement them for tasks like face generation. The course's hands-on projects, such as creating GANs for face generation and using Variational Autoencoders (VAEs) for handwritten digit generation, provide practical experience that reinforces your learning. You'll also explore autoregressive models for text generation, allowing you to see the versatility of generative models across different types of data. Advanced topics will prepare you for cutting-edge developments in the field. Throughout your journey, you will gain insights into the future landscape of generative deep learning, equipping you with the skills to innovate and lead in this rapidly evolving field. By the end of the course, you will have a solid foundation in generative deep learning and be ready to apply these techniques to real-world challenges, driving advancements in AI and machine learning.What you will learn Develop a detailed understanding of deep learning fundamentals Implement and train Generative Adversarial Networks (GANs) Create & utilize Variational Autoencoders for data generation Apply autoregressive models for text generation Explore advanced topics & stay ahead in the field of generative AI Analyze and optimize the performance of generative models Who this book is for This course is designed for technical professionals, data scientists, and AI enthusiasts who have a foundational understanding of deep learning and Python programming. It is ideal for those looking to deepen their expertise in generative models and apply these techniques to innovative projects. Prior experience with neural networks and machine learning concepts is recommended to maximize the learning experience. Additionally, research professionals and advanced practitioners in AI seeking to explore generative deep learning applications will find this course highly beneficial.
Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Download or read book AI Revolution written by Tero Ojanperä and published by CRC Press. This book was released on 2024-11-14 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""The AI Revolution"" is a practical guide to using new AI tools, such as ChatGPT, DALLE and Midjourney. Learn how to multiply your productivity by guiding or prompting AI in various ways. The book also introduces Microsoft Copilot, Google Bard, and Adobe Photoshop Generative Fill, among other new applications. ChatGPT reached a hundred million users in just two months after its release, faster than any other application before. This marked the advent of the generative AI era. Generative AI models generate text, images, music, videos, and even 3D models in ways previously thought impossible for machines. The book explains in an understandable manner how these AI models work. The book provides examples of how AI increases productivity, which professions are changing or disappearing, and how job markets will evolve in the coming years. With this book, you'll learn to recognize the opportunities and risks AI offers. Understand what this change demands from individuals and companies and what strategic skills are required. The book also covers legal questions caused by generative AI, like copyrights, data protection, and AI regulation. It also ponders societal impacts. AI produces content, thus influencing language, culture, and even worldviews. Therefore, it's crucial to understand by whom and how AI is trained. The AI revolution started by ChatGPT is just the beginning. This handbook is for you if you want to keep up with the rapid development of AI.
Download or read book Learning How to Learn written by Barbara Oakley, PhD and published by Penguin. This book was released on 2018-08-07 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course "Learning How to Learn" have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid "rut think" in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun.
Download or read book Generative AI Text Generation Strategies for LLMs written by Anand Vemula and published by Anand Vemula. This book was released on with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into the fascinating world of generative AI and explores how Large Language Models (LLMs) are revolutionizing text creation. It equips you with a foundational understanding of these AI models and empowers you to leverage their capabilities for various purposes. Part 1: Foundational Concepts sets the stage by introducing generative AI and its application in text generation. It unveils the inner workings of LLMs, explaining how these AI models are specifically designed to understand and process human language. You'll explore the vast potential of LLM-powered text generation, from crafting poems and scripts to generating product descriptions and social media content. Part 2: Applications and Use Cases dives into the practical applications of LLMs. You'll discover how LLMs can be used to generate different creative text formats like poetry, code, and even movie scripts. Explore techniques for style transfer and textual mashups, allowing you to create unique and innovative writing styles. The chapter on content creation and marketing explores how LLMs can assist with generating product descriptions, blog posts, and social media content, streamlining your content creation process. Part 3: Evaluation and Considerations delves into the process of evaluating LLM-generated text. You'll learn about various metrics used to assess the quality of the generated content, including coherence, fluency, and grammatical correctness. The chapter on challenges and biases in LLM text generation explores the importance of mitigating bias and promoting fairness in AI development. It also addresses safety and security concerns, along with the need for explainability and interpretability of LLM outputs. The final chapter explores the exciting future of generative AI and LLMs. You'll discover emerging trends like more powerful LLMs, multimodal capabilities that integrate text with other formats, and the potential for personalized LLMs that adapt to individual users. The book concludes by discussing the broader impact of generative AI on society, exploring its potential to transform creative industries, education, and communication. By understanding the fundamentals of LLMs and their applications, you can become an active participant in this evolving landscape of AI-powered text generation. This book equips you with the knowledge and tools to leverage the power of LLMs and unlock their potential for creative exploration, informative content creation, and innovative communication.
Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala