Download or read book Marginal Models written by Wicher Bergsma and published by Springer Science & Business Media. This book was released on 2009-04-03 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data provides a comprehensive overview of the basic principles of marginal modeling and offers a wide range of possible applications. Marginal models are often the best choice for answering important research questions when dependent observations are involved, as the many real world examples in this book show. In the social, behavioral, educational, economic, and biomedical sciences, data are often collected in ways that introduce dependencies in the observations to be compared. For example, the same respondents are interviewed at several occasions, several members of networks or groups are interviewed within the same survey, or, within families, both children and parents are investigated. Statistical methods that take the dependencies in the data into account must then be used, e.g., when observations at time one and time two are compared in longitudinal studies. At present, researchers almost automatically turn to multi-level models or to GEE estimation to deal with these dependencies. Despite the enormous potential and applicability of these recent developments, they require restrictive assumptions on the nature of the dependencies in the data. The marginal models of this book provide another way of dealing with these dependencies, without the need for such assumptions, and can be used to answer research questions directly at the intended marginal level. The maximum likelihood method, with its attractive statistical properties, is used for fitting the models. This book has mainly been written with applied researchers in mind. It includes many real world examples, explains the types of research questions for which marginal modeling is useful, and provides a detailed description of how to apply marginal models for a great diversity of research questions. All these examples are presented on the book's website (www.cmm.st), along with user friendly programs.
Download or read book Longitudinal Data Analysis written by Garrett Fitzmaurice and published by CRC Press. This book was released on 2008-08-11 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Download or read book Statistical Models in Epidemiology the Environment and Clinical Trials written by M.Elizabeth Halloran and published by Springer Science & Business Media. This book was released on 1999-10-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT,AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr.
Download or read book Linear Mixed Models written by Brady T. West and published by CRC Press. This book was released on 2014-07-17 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM. New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggested approaches to writing simulations Use of the lmer() function in the lme4 R package New sections on fitting LMMs to complex sample survey data and Bayesian approaches to making inferences based on LMMs Updated graphical procedures in the software packages Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options More practical recommendations on using the software for analysis A new R package (WWGbook) that contains all of the data sets used in the examples Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.
Download or read book Applied Longitudinal Analysis written by Garrett M. Fitzmaurice and published by John Wiley & Sons. This book was released on 2012-10-23 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis." —Journal of the American Statistical Association Features newly developed topics and applications of the analysis of longitudinal data Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences. The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including: Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material. With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.
Download or read book Models for Discrete Longitudinal Data written by Geert Molenberghs and published by Springer Science & Business Media. This book was released on 2006-08-30 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Download or read book Multilevel and Longitudinal Modeling Using Stata Second Edition written by Sophia Rabe-Hesketh and published by Stata Press. This book was released on 2008-02-07 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook looks specifically at Stata’s treatment of generalized linear mixed models, also known as multilevel or hierarchical models. These models are "mixed" because they allow fixed and random effects, and they are "generalized" because they are appropriate for continuous Gaussian responses as well as binary, count, and other types of limited dependent variables.
Download or read book Trends and Challenges in Categorical Data Analysis written by Maria Kateri and published by Springer Nature. This book was released on 2023-07-08 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a selection of modern and sophisticated methodologies for the analysis of large and complex univariate and multivariate categorical data. It gives an overview of a substantive and broad collection of topics in the analysis of categorical data, including association, marginal and graphical models, time series and fixed effects models, as well as modern methods of estimation such as regularization, Bayesian estimation and bias reduction methods, along with new simple measures for model interpretability. Methodological innovations and developments are illustrated and explained through real-world applications, together with useful R packages, allowing readers to replicate most of the analyses using the provided code. The applications span a variety of disciplines, including education, psychology, health, economics, and social sciences.
Download or read book Analysis of Ordinal Categorical Data written by Alan Agresti and published by John Wiley & Sons. This book was released on 2012-07-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.
Download or read book Encyclopedia of Quantitative Risk Analysis and Assessment written by and published by John Wiley & Sons. This book was released on 2008-09-02 with total page 2163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading the way in this field, the Encyclopedia of Quantitative Risk Analysis and Assessment is the first publication to offer a modern, comprehensive and in-depth resource to the huge variety of disciplines involved. A truly international work, its coverage ranges across risk issues pertinent to life scientists, engineers, policy makers, healthcare professionals, the finance industry, the military and practising statisticians. Drawing on the expertise of world-renowned authors and editors in this field this title provides up-to-date material on drug safety, investment theory, public policy applications, transportation safety, public perception of risk, epidemiological risk, national defence and security, critical infrastructure, and program management. This major publication is easily accessible for all those involved in the field of risk assessment and analysis. For ease-of-use it is available in print and online.
Download or read book Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2013-04-08 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Download or read book Topics in Modelling of Clustered Data written by Marc Aerts and published by CRC Press. This book was released on 2002-05-29 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and s
Download or read book Handbook for Applied Modeling Non Gaussian and Correlated Data written by Jamie D. Riggs and published by Cambridge University Press. This book was released on 2017-07-14 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This compact, entry-level Handbook equips applied practitioners to choose and use core models for real-world data - with R and SAS.
Download or read book Handbook of Epidemiology written by Wolfgang Ahrens and published by Springer Science & Business Media. This book was released on 2007-07-26 with total page 1628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Epidemiology provides a comprehensive overview of the field and thus bridges the gap between standard textbooks of epidemiology and dispersed publications for specialists that have a narrowed focus on specific areas. It reviews the key issues and methodological approaches pertinent to the field for which the reader pursues an expatiated overview. It thus serves both as a first orientation for the interested reader and as a starting point for an in-depth study of a specific area, as well as a quick reference and recapitulatory overview for the expert. The book includes topics that are usually missing in standard textbooks.
Download or read book Survival Analysis written by Shenyang Guo and published by Oxford University Press. This book was released on 2010-01-25 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis is a class of statistical methods for studying the occurrence and timing of events. With clearly written summaries and plentiful examples, this pocket guide will put this important statistical tool in the hands of many more social work researchers than have been able to use it before.