EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book French Mathematical Seminars

Download or read book French Mathematical Seminars written by Nancy D. Anderson and published by American Mathematical Soc.. This book was released on 1989 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for mathematics librarians, the list allows librarians to ascertain if a seminaire has been published, which library has it, and the forms of entry under which it has been cataloged.

Book Canadian Journal of Mathematics

Download or read book Canadian Journal of Mathematics written by and published by . This book was released on 1992-10 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Random Walks on Infinite Graphs and Groups

Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Book Ergodic Theory of Random Transformations

Download or read book Ergodic Theory of Random Transformations written by Yuri Kifer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

Book Groups  Graphs and Random Walks

Download or read book Groups Graphs and Random Walks written by Tullio Ceccherini-Silberstein and published by Cambridge University Press. This book was released on 2017-06-29 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubtedly stem.

Book Topics in Probability and Lie Groups

Download or read book Topics in Probability and Lie Groups written by John Christopher Taylor and published by American Mathematical Soc.. This book was released on with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is comprised of two parts: the first contains articles by S. N. Evans, F. Ledrappier, and Figa-Talomanaca. These articles arose from a Centre de Recherches de Mathematiques (CRM) seminar entitiled, ''Topics in Probability on Lie Groups: Boundary Theory''. Evans gives a synthesis of his pre-1992 work on Gaussian measures on vector spaces over a local field. Ledrappier uses the freegroup on $d$ generators as a paradigm for results on the asymptotic properties of random walks and harmonic measures on the Martin boundary. These articles are followed by a case study by Figa-Talamanca using Gelfand pairs to study a diffusion on a compact ultrametric space. The second part of the book is an appendix to the book Compactifications of Symmetric Spaces (Birkhauser) by Y. Guivarc'h and J. C. Taylor. This appendix consists of an article by each author and presents the contents of this book in a more algebraic way. L. Ji and J.-P. Anker simplifies some of their results on the asymptotics of the Green function that were used to compute Martin boundaries. And Taylor gives a self-contained account of Martin boundary theory for manifolds using the theory of second order strictly elliptic partial differential operators.

Book Structural Aspects in the Theory of Probability

Download or read book Structural Aspects in the Theory of Probability written by Herbert Heyer and published by World Scientific. This book was released on 2010 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is conceived as a text accompanying the traditional graduate courses on probability theory. An important feature of this enlarged version is the emphasis on algebraic-topological aspects leading to a wider and deeper understanding of basic theorems such as those on the structure of continuous convolution semigroups and the corresponding processes with independent increments. Fourier transformation ? the method applied within the settings of Banach spaces, locally compact Abelian groups and commutative hypergroups ? is given an in-depth discussion. This powerful analytic tool along with the relevant facts of harmonic analysis make it possible to study certain properties of stochastic processes in dependence of the algebraic-topological structure of their state spaces. In extension of the first edition, the new edition contains chapters on the probability theory of generalized convolution structures such as polynomial and Sturm?Liouville hypergroups, and on the central limit problem for groups such as tori, p-adic groups and solenoids.

Book Comptes Rendus Math  matiques de L Acad  mie Des Sciences

Download or read book Comptes Rendus Math matiques de L Acad mie Des Sciences written by Royal Society of Canada. Academy of Science and published by . This book was released on 1999 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability Measures on Groups

Download or read book Probability Measures on Groups written by H. Heyer and published by Springer. This book was released on 2006-11-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: a

Book Proceedings of the Tunisian Mathematical Society  Volume 11

Download or read book Proceedings of the Tunisian Mathematical Society Volume 11 written by K. Trimeche and published by Nova Publishers. This book was released on 2006 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings consist of ten carefully refereed and selected papers which were presented at the 12th symposium of Tunisian Mathematical Society held on March 18-23, 2004 in Mahdia (Tunisia). This symposium was one of the largest international meeting on Mathematics in Tunisia. A total of 200 participants from several countries attended to the meeting. In addition to the plenary, invited and contributed talks, there was a panel discussion on future research directions and problems in various areas of mathematics.

Book Random Matrices and Iterated Random Functions

Download or read book Random Matrices and Iterated Random Functions written by Gerold Alsmeyer and published by Springer Science & Business Media. This book was released on 2013-08-28 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​Random Matrices are one of the major research areas in modern probability theory, due to their prominence in many different fields such as nuclear physics, statistics, telecommunication, free probability, non-commutative geometry, and dynamical systems. A great deal of recent work has focused on the study of spectra of large random matrices on the one hand and on iterated random functions, especially random difference equations, on the other. However, the methods applied in these two research areas are fairly dissimilar. Motivated by the idea that tools from one area could potentially also be helpful in the other, the volume editors have selected contributions that present results and methods from random matrix theory as well as from the theory of iterated random functions. This work resulted from a workshop that was held in Münster, Germany in 2011. The aim of the workshop was to bring together researchers from two fields of probability theory: random matrix theory and the theory of iterated random functions. Random matrices play fundamental, yet very different roles in the two fields. Accordingly, leading figures and young researchers gave talks on their field of interest that were also accessible to a broad audience.

Book Annales Math  matiques Blaise Pascal

Download or read book Annales Math matiques Blaise Pascal written by and published by . This book was released on 2006 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability Measures on Groups

Download or read book Probability Measures on Groups written by Herbert Heyer and published by Springer. This book was released on 1979 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability Measures on Locally Compact Groups

Download or read book Probability Measures on Locally Compact Groups written by H. Heyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.

Book Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi Compactness

Download or read book Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi Compactness written by Hubert Hennion and published by Springer. This book was released on 2003-07-01 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The usefulness of from the of techniques perturbation theory operators, to kernel for limit theorems for a applied quasi-compact positive Q, obtaining Markov chains for stochastic of or dynamical by describing properties systems, of Perron- Frobenius has been demonstrated in several All use a operator, papers. these works share the features the features that must be same specific general ; used in each stem from the nature of the functional particular case precise space where the of is and from the number of quasi-compactness Q proved eigenvalues of of modulus 1. We here a functional framework for Q give general analytical this method and we the aforementioned behaviour within it. It asymptotic prove is worth that this framework is to allow the unified noticing sufficiently general treatment of all the cases considered in the literature the previously specific ; characters of model translate into the verification of of simple hypotheses every a functional nature. When to Markov kernels or to Perr- applied Lipschitz Frobenius associated with these statements rise operators expanding give maps, to new results and the of known The main clarify proofs already properties. of the deals with a Markov kernel for which 1 is a part quasi-compact Q paper of modulus 1. An essential but is not the simple eigenvalue unique eigenvalue element of the work is the of the of peripheral Q precise description spectrums and of its To conclude the the results obtained perturbations.

Book Teaching and Learning Stochastics

Download or read book Teaching and Learning Stochastics written by Carmen Batanero and published by Springer. This book was released on 2018-03-01 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of selected papers that represent the current variety of research on the teaching and learning of probability. The respective chapters address a diverse range of theoretical, empirical and practical aspects underpinning the teaching and learning of probability, curricular issues, probabilistic reasoning, misconceptions and biases, as well as their pedagogical implications. These chapters are divided into THREE main sections, dealing with: TEACHING PROBABILITY, STUDENTS' REASONING AND LEARNING AND EDUCATION OF TEACHERS. In brief, the papers presented here include research dealing with teachers and students at different levels and ages (from primary school to university) and address epistemological and curricular analysis, as well as the role of technology, simulations, language and visualisation in teaching and learning probability. As such, it offers essential information for teachers, researchers and curricular designers alike.

Book Probability Measures on Groups VIII

Download or read book Probability Measures on Groups VIII written by Herbert Heyer and published by Springer. This book was released on 2006-11-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: