EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mapping Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal

Download or read book Mapping Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The work reported here is part of a 'multiscale characterization' study of heterogeneous deformation patterns in metals. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to ≈10% strain in roughly uniaxial compression. The macroscopic strain field was monitored during the test by optical 'image correlation'. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain developed in an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) with an overall ({bar 1}01) habit that contains no common slip plane of the fcc crystal. The mesoscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 [mu]m. Areas within the primary, conjugate and mixed (primary + conjugate) strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure was concentrated in broad, somewhat irregular primary bands that lay nominally parallel to (111) in an almost periodic distribution with a period of about 30 [mu]m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands, that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands; interband stresses were small. The maximum resolved shear stresses within the primary bands were oriented out of the plane of the bands, and, hence, could not recover the dislocation structure in the bands. The maximum resolved shear stresses in the interband regions lay predominantly in [111] planes. The results are compared to the mesoscopic defect patterns found in Cu in etch pit studies done some decades ago, which also revealed a mesoscopic dislocation structure made up of orthogonal bands.

Book Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal

Download or read book Mesoscale Heterogeneity in the Plastic Deformation of a Copper Single Crystal written by and published by . This book was released on 2007 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work reported here is part of a 'multiscale characterization' study intended to clarify the deformation pattern in a Cu single crystal deformed in compression. A copper single crystal was oriented for single slip in the (111)[{bar 1}01] slip system and tested to ≈10% strain in uniaxial compression, using a specifically designed '6 degree of freedom' compressive test device to achieve uniaxial strain. The macroscopic strain field was monitored during the test by optical 'image correlation' methods that mapped the strain field with a spatial resolution of about 100 [mu]m. The strain field was measured on orthogonal surfaces, one of which (the x-face) was oriented perpendicular to [1{bar 2}1] and contained the [{bar 1}01] direction of the preferred slip system. The macroscopic strain produced is an inhomogeneous pattern of broad, crossed shear bands in the x-face. One, the primary band, lay parallel to (111). The second, the 'conjugate' band, was oriented perpendicular to (111) and contains no common slip plane of the fcc crystal. The mesoscopic structure of the inhomogeneous macroscopic deformation pattern was explored with selected area diffraction, using a focused synchrotron radiation polychromatic beam with a resolution of 1-3 [mu]m. Areas within the primary, conjugate and primary + conjugate strain regions of the x-face were identified and mapped for their orientation, excess defect density and shear stress. The mesoscopic defect structure consisted of broad, somewhat irregular primary bands that lay nominally parallel to (111) in a almost periodic distribution with a period of about 30 [mu]m. These primary bands were dominant even in the region of conjugate strain. There were also broad conjugate defect bands, almost precisely perpendicular to the primary bands that tended to bridge primary bands and terminate at them. The residual shear stresses were large (ranging to well above 500 MPa) and strongly correlated with the primary shear bands. The results are compared to the mesoscopic defect patterns found in Cu in etch pit studies done some decades ago.

Book Strain and Dislocation Gradients from Diffraction

Download or read book Strain and Dislocation Gradients from Diffraction written by Rozaliya Barabash and published by World Scientific. This book was released on 2014 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights emerging diffraction studies of strain and dislocation gradients with mesoscale resolution, which is currently a focus of research at laboratories around the world. While ensemble-average diffraction techniques are mature, grain and subgrain level measurements needed to understand real materials are just emerging. In order to understand the diffraction signature of different defects, it is necessary to understand the distortions created by the defects and the corresponding changes in the reciprocal space of the non-ideal crystals. Starting with a review of defect classifications based on their displacement fields, this book then provides connections between different dislocation arrangements, including geometrically necessary and statistically stored dislocations, and other common defects and the corresponding changes in the reciprocal space and diffraction patterns. Subsequent chapters provide an overview of microdiffraction techniques developed during the last decade to extract information about strain and dislocation gradients. X-ray microdiffraction is a particularly exciting application compared with alternative probes of local crystalline structure, orientation and defect density, because it is inherently non-destructive and penetrating.

Book The Plastic Deformation of a Single Crystal of Copper

Download or read book The Plastic Deformation of a Single Crystal of Copper written by Kent Robertson Van Horn and published by . This book was released on 1929 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of Mesoscopic Crystal Plasticity from High resolution Surface Displacement and Lattice Orientation Mappings

Download or read book Characterization of Mesoscopic Crystal Plasticity from High resolution Surface Displacement and Lattice Orientation Mappings written by Fabio Di Gioacchino and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Being able to predict the evolution of plastic deformation at the microstructural scale is of paramount importance in the engineering of materials for advanced applications. However, this is not straightforward because of the multiscale nature of deformation heterogeneity, both in space and time . The present thesis combines four related studies in a coherent work, which is aimed to develop experimental methods for studying crystal plasticity at the micro and mesoscale. A novel methodology for gold remodelling is initially proposed and used to apply high-density speckle patterns on the surface of stainless steel specimens. The unique proprieties of the speckle pattern enabled plastic deformation mapping with submicron resolution using digital image correlation (HDIC). It was therefore possible to study the concomitant evolution of microbands and transgranular deformation bands in such alloy. High-resolution deformation mapping also enabled comparison with high-resolution electron backscatter diffraction (EBSD) observations. The only partial correspondence of results proved the limits of EBSD in characterizing plastic deformation. The cause of such limitation is later identified in the reduced sensitivity to lattice slip of the EBSD technique. Hence, a novel method of HDIC data analysis is proposed to separate the contributions of lattice slip and lattice rotation from the deformation mapping. The method is adopted to characterize plasticity in austenitic stainless steel and at the plastic deformation zone (PDZ) around a silicon particle embedded in a softer aluminum matrix. Results show that the proposed experimental methodology has the unique capability of providing a complete description of the micro and mesoscale mechanics of crystal plasticity. HDIC therefore emerges as a key technique in the development of accurate physical-based multiscale crystal plasticity models.

Book Implications of Limited Slip in Crystal Plasticity

Download or read book Implications of Limited Slip in Crystal Plasticity written by Jeffrey Townsend Lloyd and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To better understand consequences of classical assumptions regarding deformation mechanisms at the mesoscale, experimental observations of mesoscale deformation are presented. In light of actual micrographics of deformed polycrystals, the Von Mises criterion which states that 5 independent plastic deformation sources are needed at each material point to satisfy compatibility is studied, and the consequences of violating this assumption are presented through comprehensive parametric studies. From these studies, it can be concluded that not only are 5 independent plastic deformation sources not needed or observed at each point, but if less than 5 sources are allowed to be active a new physical understanding of a mechanism for kinematic hardening emerges. Furthermore, for enhanced subgrain rotation and evolution the Von Mises criterion must be violated. The second focus of this work is looking at studies, experiments, and models of mesoscale deformation in order to better understand controlling deformation length scales, so that they can be fed into a combined top-down, bottom-up, non-uniform crystal plasticity model that captures the variability provided by the mesoscale during deformation. This can in turn be used to more accurately model the heterogeneity provided by the response of each grain. The length scale intuited from insight into mesoscale deformation mechanisms through observation of experiments and analytical models is the free slip line length of each slip system, which informs non-uniform material parameters in a crystal plasticity model that control the yielding, hardening, and subsequent softening of each individual slip system. The usefulness of this non-uniform multiscale crystal plasticity model is then explored with respect to its ability to reproduce experimentally measured responses at different strain levels for different size grains. Furthermore, a "Mantle-Core" type model which combines both the non-uniform material parameter model and the limited slip model is created, in which the majority of plastic deformation is accommodated near the grain boundary under multi-slip, and uniform plastic deformation occurs in the bulk dominated by double or triple slip. These models are compared for similar levels of hardening, and the pole figures that result from their deformation are compared to experimental pole figures. While there are other models that can capture the heterogeneity introduced by mesoscale deformation at the grain scale, this combined top-down, bottom-up multiscale crystal plasticity model is by far one of the most computationally efficient as the heterogeneity of the mesoscale is does not emerge by introducing higher order terms, but rather by incorporating the heterogeneity into a simple crystal plasticity formulation. Therefore, as computational power increases, this approach will be among the first that will be able to perform accurate polycrystal level modeling while retaining the heterogeneity introduced by non-local mesoscale deformation mechanisms at the sub-grain scale.

Book Study of the Plastic Deformation of Copper Single Crystals

Download or read book Study of the Plastic Deformation of Copper Single Crystals written by Calvin Robert Cupp and published by . This book was released on 1953 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plastic Deformation and Recrystallization of Single Crystals of Copper

Download or read book Plastic Deformation and Recrystallization of Single Crystals of Copper written by Joseph John Becker and published by . This book was released on 1951 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electron Backscatter Diffraction in Materials Science

Download or read book Electron Backscatter Diffraction in Materials Science written by Adam J. Schwartz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystallographic texture or preferred orientation has long been known to strongly influence material properties. Historically, the means of obtaining such texture data has been though the use of x-ray or neutron diffraction for bulk texture measurements, or transmission electron microscopy or electron channeling for local crystallographic information. In recent years, we have seen the emergence of a new characterization technique for probing the microtexture of materials. This advance has come about primarily through the automated indexing of electron backscatter diffraction (EBSD) patterns. The first commercially available system was introduced in 1994, and since then of sales worldwide has been dramatic. This has accompanied widening the growth applicability in materials scienceproblems such as microtexture, phase identification, grain boundary character distribution, deformation microstructures, etc. and is evidence that this technique can, in some cases, replace more time-consuming transmission electron microscope (TEM) or x-ray diffraction investigations. The benefits lie in the fact that the spatial resolution on new field emission scanning electron microscopes (SEM) can approach 50 nm, but spatial extent can be as large a centimeter or greater with a computer controlled stage and montagingofthe images. Additional benefits include the relative ease and low costofattaching EBSD hardware to new or existing SEMs. Electron backscatter diffraction is also known as backscatter Kikuchi diffraction (BKD), or electron backscatter pattern technique (EBSP). Commercial names for the automation include Orientation Imaging Microscopy (OIMTM) and Automated Crystal Orientation Mapping (ACOM).

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1982 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metals Abstracts

Download or read book Metals Abstracts written by and published by . This book was released on 1998 with total page 1076 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dislocations  Mesoscale Simulations and Plastic Flow

Download or read book Dislocations Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.

Book Heterostructured Materials

Download or read book Heterostructured Materials written by Xiaolei Wu and published by CRC Press. This book was released on 2021-11-24 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterostructured (HS) materials represent an emerging class of materials that are expected to become a major research field for the communities of materials, mechanics, and physics in the next couple of decades. One of the biggest advantages of HS materials is that they can be produced by large-scale industrial facilities and technologies and therefore can be commercialized without the scaling up and high-cost barriers that are often encountered by other advanced materials. This book collects recent papers on the progress in the field of HS materials, especially their fundamental physics. The papers are arranged in a sequence of chapters that will help new researchers entering the field to have a quick and comprehensive understanding of HS materials, including the fundamentals and recent progress in their processing, characterization, and properties.

Book Materials Discovery and Design

Download or read book Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2018-09-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.