EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Magneto transport Properties of Skyrmions and Chiral Spin Structures in MnSi

Download or read book Magneto transport Properties of Skyrmions and Chiral Spin Structures in MnSi written by Tomoyuki Yokouchi and published by . This book was released on 2019 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based on molecular beam epitaxy, ion-beam microfabrication and micromagnetic simulation. The book also reviews key aspects of B20-type MnSi chiral magnets, which host magnetic skyrmions, nanoscale objects formed by helical spatial spin structures. Readers are then introduced to cutting-edge findings on the material. Furthermore, by reviewing the author's successful experiments, the book provides readers with a valuable update on the latest achievements in the measurement and fabrication of magnetic materials in spintronics.

Book Magneto transport Properties of Skyrmions and Chiral Spin Structures in MnSi

Download or read book Magneto transport Properties of Skyrmions and Chiral Spin Structures in MnSi written by Tomoyuki Yokouchi and published by Springer. This book was released on 2019-08-14 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides extensive and novel insights into transport phenomena in MnSi, paving the way for applying the topology and chirality of spin textures to the development of spintronics devices. In particular, it describes in detail the key measurements, e.g. magnetoresistance and nonlinear electronic transport, and multiple material-fabrication techniques based on molecular beam epitaxy, ion-beam microfabrication and micromagnetic simulation. The book also reviews key aspects of B20-type MnSi chiral magnets, which host magnetic skyrmions, nanoscale objects formed by helical spatial spin structures. Readers are then introduced to cutting-edge findings on the material. Furthermore, by reviewing the author’s successful experiments, the book provides readers with a valuable update on the latest achievements in the measurement and fabrication of magnetic materials in spintronics.

Book Skyrmions

    Book Details:
  • Author : J. Ping Liu
  • Publisher : CRC Press
  • Release : 2016-12-08
  • ISBN : 1315284154
  • Pages : 380 pages

Download or read book Skyrmions written by J. Ping Liu and published by CRC Press. This book was released on 2016-12-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.

Book Thermal Stability of Metastable Magnetic Skyrmions

Download or read book Thermal Stability of Metastable Magnetic Skyrmions written by Louise Desplat and published by Springer Nature. This book was released on 2021-02-04 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: The energy cost associated with modern information technologies has been increasing exponentially over time, stimulating the search for alternative information storage and processing devices. Magnetic skyrmions are solitonic nanometer-scale quasiparticles whose unique topological properties can be thought of as that of a Mobius strip. Skyrmions are envisioned as information carriers in novel information processing and storage devices with low power consumption and high information density. As such, they could contribute to solving the energy challenge. In order to be used in applications, isolated skyrmions must be thermally stable at the scale of years. In this work, their stability is studied through two main approaches: the Kramers' method in the form of Langer's theory, and the forward flux sampling method. Good agreement is found between the two methods. We find that small skyrmions possess low internal energy barriers, but are stabilized by a large activation entropy. This is a direct consequence of the existence of stable modes of deformation of the skyrmion. Additionally, frustrated exchange that arises at some transition metal interfaces leads to new collapse paths in the form of the partial nucleation of the corresponding antiparticle, as merons and antimerons.

Book Skyrmions in Condensed Matter

Download or read book Skyrmions in Condensed Matter written by Jung Hoon Han and published by Springer. This book was released on 2017-10-09 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes some of the most exciting theoretical developments in the topological phenomena of skyrmions in noncentrosymmetric magnetic systems over recent decades. After presenting pedagogical backgrounds to the Berry phase and homotopy theory, the author systematically discusses skyrmions in the order of their development, from the Ginzburg-Landau theory, CP1 theory, Landau-Lifshitz-Gilbert theory, and Monte Carlo numerical approaches. Modern topics, such as the skyrmion-electron interaction, skyrmion-magnon interaction, and various generation mechanisms of the skyrmion are examined with a focus on their general theoretical aspects. The book concludes with a chapter on the skyrmion phenomena in the cold atom context. The topics are presented at a level accessible to beginning graduate students without a substantial background in field theory. The book can also be used as a text for those who wish to engage in the physics of skyrmions in magnetic systems, or as an introduction to the various theoretical methods used in studying current condensed-matter systems.

Book Skyrmions

    Book Details:
  • Author : J. Ping Liu
  • Publisher : CRC Press
  • Release : 2016-12-08
  • ISBN : 1315284162
  • Pages : 502 pages

Download or read book Skyrmions written by J. Ping Liu and published by CRC Press. This book was released on 2016-12-08 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book reviews all the aspects of recent developments in research on skyrmions, from the presentation of the observation and characterization techniques to the description of physical properties and expected applications. It will be of great use for all scientists working in this field." – Albert Fert, 2007 Nobel Laureate in Physics (from the Foreword) A skyrmion is a tiny region of reversed magnetization – quasiparticles since they are not present except in a magnetic state, and also give rise to physics that cannot be described by Maxwell’s equations. These particles are fascinating subjects for theoretical and experimental studies. Moreover, as a new type of magnetic domain structure with special topological structures, skyrmions feature outstanding magnetic and transport properties and may well have applications in data storage and other advanced spintronic devices, as readers will see in this book. Chapters address the relationships between physical properties of condensed matter, such as the AB effect, Berry phase effect, quantum Hall effect, and topological insulators. Overall, it provides a timely introduction to the fundamental aspects and possible applications of magnetic skyrmions to an interdisciplinary audience from condensed matter physics, chemistry, and materials science.

Book Ab initio description of transverse transport due to impurity scattering in transition metals

Download or read book Ab initio description of transverse transport due to impurity scattering in transition metals written by Bernd Zimmermann and published by Forschungszentrum Jülich. This book was released on 2014 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20 type Compounds

Download or read book Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20 type Compounds written by Naoya Kanazawa and published by Springer. This book was released on 2015-07-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents systematic experimental research on chiral-lattice crystals referred to as B20-type germanium compounds, especially focusing on skyrmion spin textures and Dirac electrons. An emergent electromagnetic field observed in MnGe demonstrates a formation of three-dimensional skyrmion crystals. Detection of skyrmions in nanoscale Hall bar devices made of FeGe is realized by measuring the topological Hall effect, a transport property reflecting emergent fields produced by skyrmions. By measuring the electron-filling dependence of thermopower in CoGe, a pronounced thermoelectric property in this compound is revealed to stem from the asymmetric density of states appearing at certain levels of Fermi energy in the Dirac electron state. The three main results named above will contribute to enriching a variety of novel electromagnetic responses of emergent gauge fields in solids, to realizing high-performance skyrmion-based magnetic memory, and to designing high-efficiency thermoelectric materials, respectively.

Book Spintronics Handbook  Second Edition  Spin Transport and Magnetism

Download or read book Spintronics Handbook Second Edition Spin Transport and Magnetism written by Evgeny Y. Tsymbal and published by CRC Press. This book was released on 2019-06-26 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.

Book Discovery of Co existing Non collinear Spin Textures in D2d Heusler Compounds

Download or read book Discovery of Co existing Non collinear Spin Textures in D2d Heusler Compounds written by Jagannath Jena and published by Springer Nature. This book was released on 2022-06-29 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-collinear spin textures have attracted significant attention due to their topological nature, emergent electromagnetic properties, and potential spintronic and magnonic device applications. This book explores the physical properties of distinct spin textures in D2d compounds. The main goals of the work are (a) discovering new spin textures in D2d Heusler compounds and studying their detailed properties to enrich the field of non-collinear magnetism (b) optimizing the nano-track geometry and generating isolated and single chains of nano-objects that will establish new hallmarks for technological applications (c) studying the stability of spin textures with magnetic fields and temperatures and finding a way to observe the striking behavior of spin textures near the specimen edges. The first few chapters provide a brief overview of spin textures such as Bloch and Néel skyrmions. In the experimental methods section, the author shows how to identify the single-crystalline grains of a polycrystalline sample, how to make single-crystalline thin specimens and nano-tracks, and then provides explicit descriptions of different imaging techniques performed on a transmission electron microscope. This part will be valuable for beginners wishing to conduct research in experimental nano-magnetism and transmission electron microscope imaging. The core results of the book are presented in four chapters, describing the discovery of several new and unanticipated spin textures, namely square-shaped antiskyrmions, elliptical Bloch skyrmions, fractional antiskyrmions, fractional Bloch skyrmions and elongated (anti)skyrmions in a single D2d Heusler compound. It is shown that these textures can be understood by a combination of dipole-dipole interactions and a chiral vector exchange that makes it possible to stabilize various spin textures even in the same compound. The D2d compounds are the first non-centrosymmetric systems shown to host several co-existing non-collinear spin textures.

Book Topology in Magnetism

    Book Details:
  • Author : Jiadong Zang
  • Publisher : Springer
  • Release : 2018-09-24
  • ISBN : 3319973347
  • Pages : 416 pages

Download or read book Topology in Magnetism written by Jiadong Zang and published by Springer. This book was released on 2018-09-24 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.

Book Topological Structures in Ferroic Materials

Download or read book Topological Structures in Ferroic Materials written by Jan Seidel and published by Springer. This book was released on 2016-02-12 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

Book Magnetic Multilayers

Download or read book Magnetic Multilayers written by L H Bennett and published by World Scientific. This book was released on 1994-12-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on an increasingly important area of materials science and technology, namely, the fabrication and properties of artificial materials where slabs of magnetized materials are sandwiched between slabs of nonmagnetized materials. It includes reviews by experts on the theory and descriptions of the various experimental techniques such as those using nuclear or electron spin probes, as well as optical, X-ray or neutron probes. It also reviews potential applications such as the giant magnetoresistance, and one specialized preparation technique, the electrodeposition. The various chapters are tutorial in nature, making the subject accessible to nonspecialists, as well as useful to researchers in the field. Contents: Application of Magnetic Multilayers (M Pardavi-Horvath)Magnetic Coupling in Metallic Multilayers (Y Yafet)First-Principles Calculations of Magnetic Interfaces and Multilayers (M Weinert ' S Blügel)Influence of Imperfections on the Magnetic Properties of Fe/Ag Films and Multilayers (J Pirnay et al.)NMR Studies on Magnetic Multilayers (H A M de Gronckel ' W J M de Jonge)Conversion Electron Mössbauer Spectroscopy of Magnetic Multilayers (Ch Sauer ' W Zinn)Resonance in Coupled Ferromagnetic Layer Structures (P E Wigen)Magnetic Circular X-Ray Dichroism (F Baudelet et al.)Magneto-Optical Spectra in Multilayers (K Sato)Neutron and X-Ray Diffraction Studies of Magnetic Multilayers (C F Majkrzak et al.)Giant Magnetoresistance (GMR) in Multilayers (M Pardavi-Horvath)Electrodeposited Magnetic Multilayers (M P Dariel et al.) Readership: Graduate students, professional researchers and well-educated others (eg. contract officers). keywords:Magnetic Multilayers;Circular Dichroism;Giant Magnetoresistance;Magnetic Interfaces;Magnetic Multilayers: Effect of Imperfections;Conversion Electron Mossbauer Spectroscopy;Multilayer Magnetic Coupling;Magneto-Optical Spectroscopy;Neutron Diffraction;Magnetic Xray Diffraction;Magnetic Multilayer Fabrication;Supermirrors;Magnetic Recording;RKKY Coupling;Nuclear Magnetic Resonance;Ferromagnetic Resonance

Book Magnetic Skyrmions

    Book Details:
  • Author : Dipti Ranjan Sahu
  • Publisher : BoD – Books on Demand
  • Release : 2021-07-28
  • ISBN : 1839692529
  • Pages : 150 pages

Download or read book Magnetic Skyrmions written by Dipti Ranjan Sahu and published by BoD – Books on Demand. This book was released on 2021-07-28 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic skyrmionics is an advanced and active research field, which involves fundamental physics, the creation of efficient next-generation high-density information devices, the formation and manipulation of nanometer-size skyrmions in devices, and the development of compatible materials at room temperature. The magnetic skyrmions found in magnetic materials exhibit spiral magnetism. This book presents a basic overview of magnetic skyrmions along with current research on magnetic skyrmions, emphasizing formation mechanisms and materials design strategies. This book is suitable for an interdisciplinary audience of undergraduates, graduates, engineers, scientists, and researchers in the development of the next generation of spintronic devices.

Book Metallic Multilayers

Download or read book Metallic Multilayers written by A. Chamberod and published by . This book was released on 1989 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a series of lectures given in a Summer School held in Aussois (France) in September 1989. It offers a global perspective on the current state-of-the-art in the rapidly emerging field of metallic multilayered structures.

Book Chirality  Magnetism and Magnetoelectricity

Download or read book Chirality Magnetism and Magnetoelectricity written by Eugene Kamenetskii and published by Springer Nature. This book was released on 2021-03-27 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel – electromagnons and skyrmions – has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field.

Book Chiral and Topological Nature of Magnetic Skyrmions

Download or read book Chiral and Topological Nature of Magnetic Skyrmions written by Shilei Zhang and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3-100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.