EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Analytics in Reservoir Engineering

Download or read book Data Analytics in Reservoir Engineering written by Sathish Sankaran and published by . This book was released on 2020-10-29 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.

Book Artificial Intelligence and Data Analytics for Energy Exploration and Production

Download or read book Artificial Intelligence and Data Analytics for Energy Exploration and Production written by Fred Aminzadeh and published by John Wiley & Sons. This book was released on 2022-08-26 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: ARTIFICAL INTELLIGENCE AND DATA ANALYTICS FOR ENERGY EXPLORATION AND PRODUCTION This groundbreaking new book is written by some of the foremost authorities on the application of data science and artificial intelligence techniques in exploration and production in the energy industry, covering the most comprehensive and updated new processes, concepts, and practical applications in the field. The book provides an in-depth treatment of the foundations of Artificial Intelligence (AI) Machine Learning, and Data Analytics (DA). It also includes many of AI-DA applications in oil and gas reservoirs exploration, development, and production. The book covers the basic technical details on many tools used in “smart oil fields”. This includes topics such as pattern recognition, neural networks, fuzzy logic, evolutionary computing, expert systems, artificial intelligence machine learning, human-computer interface, natural language processing, data analytics and next-generation visualization. While theoretical details will be kept to the minimum, these topics are introduced from oil and gas applications viewpoints. In this volume, many case histories from the recent applications of intelligent data to a number of different oil and gas problems are highlighted. The applications cover a wide spectrum of practical problems from exploration to drilling and field development to production optimization, artificial lift, and secondary recovery. Also, the authors demonstrate the effectiveness of intelligent data analysis methods in dealing with many oil and gas problems requiring combining machine and human intelligence as well as dealing with linguistic and imprecise data and rules.

Book Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization

Download or read book Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization written by Reza Yousefzadeh and published by Springer Nature. This book was released on 2023-04-08 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores methods for managing uncertainty in reservoir characterization and optimization. It covers the fundamentals, challenges, and solutions to tackle the challenges made by geological uncertainty. The first chapter discusses types and sources of uncertainty and the challenges in different phases of reservoir management, along with general methods to manage it. The second chapter focuses on geological uncertainty, explaining its impact on field development and methods to handle it using prior information, seismic and petrophysical data, and geological parametrization. The third chapter deals with reducing geological uncertainty through history matching and the various methods used, including closed-loop management, ensemble assimilation, and stochastic optimization. The fourth chapter presents dimensionality reduction methods to tackle high-dimensional geological realizations. The fifth chapter covers field development optimization using robust optimization, including solutions for its challenges such as high computational cost and risk attitudes. The final chapter introduces different types of proxy models in history matching and robust optimization, discussing their pros and cons, and applications. The book will be of interest to researchers and professors, geologists and professionals in oil and gas production and exploration.

Book Reservoir Characterization

Download or read book Reservoir Characterization written by Larry Lake and published by Elsevier. This book was released on 2012-12-02 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.

Book Machine Learning in the Oil and Gas Industry

Download or read book Machine Learning in the Oil and Gas Industry written by Yogendra Narayan Pandey and published by Apress. This book was released on 2020-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.

Book Neural Networks

    Book Details:
  • Author : Gérard Dreyfus
  • Publisher : Springer Science & Business Media
  • Release : 2005-11-25
  • ISBN : 3540288473
  • Pages : 509 pages

Download or read book Neural Networks written by Gérard Dreyfus and published by Springer Science & Business Media. This book was released on 2005-11-25 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.

Book Machine Learning Applications in Subsurface Energy Resource Management

Download or read book Machine Learning Applications in Subsurface Energy Resource Management written by Srikanta Mishra and published by CRC Press. This book was released on 2022-12-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy). Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance) Offers a variety of perspectives from authors representing operating companies, universities, and research organizations Provides an array of case studies illustrating the latest applications of several ML techniques Includes a literature review and future outlook for each application domain This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.

Book Data Driven Analytics for the Geological Storage of CO2

Download or read book Data Driven Analytics for the Geological Storage of CO2 written by Shahab Mohaghegh and published by CRC Press. This book was released on 2018-05-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Book Well Test Analysis

Download or read book Well Test Analysis written by Dominique Bourdet and published by Elsevier. This book was released on 2002-08-21 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on well test analysis, and the use of advanced interpretation models is volume 3 in the series Handbook of Petroleum Exploration and Production.The chapters in the book are: Principles of Transient Testing, Analysis Methods, Wellbore Conditions, Effect of Reservoir Heterogeneities on Well Responses, Effect of Reservoir Boundaries on Well Responses, Multiple Well Testing, Application to Gas Reservoirs, Application to Multiphase Reservoirs, Special Tests, Practical Aspects of Well Test Interpretation.

Book Shale Analytics

Download or read book Shale Analytics written by Shahab D. Mohaghegh and published by Springer. This book was released on 2017-02-09 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.

Book Machine Learning Guide for Oil and Gas Using Python

Download or read book Machine Learning Guide for Oil and Gas Using Python written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2021-04-09 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques

Book Shared Earth Modeling

Download or read book Shared Earth Modeling written by John R. Fanchi and published by Gulf Professional Publishing. This book was released on 2002-07-31 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to shared earth modeling -- Geology -- Petrophysics -- Well logging -- Geophysics -- Fluid properties -- Measures of rock-fluid interactions -- Applications of rock-fluid interactions -- Fluid flow equations -- Fundamentals of reservoir characterization -- Modern reservoir characterization Techniques -- Well testing -- Production analysis -- Reservoir flow simulation -- Reservoir management -- Improved recovery.

Book Ensemble Machine Learning

    Book Details:
  • Author : Cha Zhang
  • Publisher : Springer Science & Business Media
  • Release : 2012-02-17
  • ISBN : 1441993258
  • Pages : 332 pages

Download or read book Ensemble Machine Learning written by Cha Zhang and published by Springer Science & Business Media. This book was released on 2012-02-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

Book Machine Learning and Artificial Intelligence in Geosciences

Download or read book Machine Learning and Artificial Intelligence in Geosciences written by and published by Academic Press. This book was released on 2020-09-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics

Book Building Business Knowledge for Complex Modern Business Environments

Download or read book Building Business Knowledge for Complex Modern Business Environments written by Sedky, Ahmed and published by IGI Global. This book was released on 2024-10-15 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: As business technology advances, global competition results in shifting consumer expectations. Businesses with effective knowledge management have become essential for organizations seeking to thrive. Modern business environments are complex, requiring leaders and teams to navigate data, insights, and strategies. As businesses confront challenges like market volatility, regulatory changes, and the need for sustainable practices, cultivating an understanding of industry dynamics, emerging trends, and innovative practices is pivotal. Further research into the intersectionality of business essentials with emerging technologies, socio-economic factors, and environmental sustainability may foster interdisciplinary collaboration and innovation. Building Business Knowledge for Complex Modern Business Environments explores essential components necessary for navigating contemporary business landscapes. It delves into crucial aspects such as strategic planning, financial management, technological integration, marketing strategies, and sustainable practices through detailed analysis and practical examples for business success. This book covers topics such as management science, digital technology, and entrepreneurship, and is a useful resource for business owners, managers, administrators, data scientists, computer engineers, academicians, and researchers.

Book Applications of Machine Learning

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Book Artificial Intelligent Approaches in Petroleum Geosciences

Download or read book Artificial Intelligent Approaches in Petroleum Geosciences written by Constantin Cranganu and published by Springer Nature. This book was released on with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: