EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Machine Learning Pocket Reference

Download or read book Machine Learning Pocket Reference written by Matt Harrison and published by "O'Reilly Media, Inc.". This book was released on 2019-08-27 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines

Book Machine Learning Pocket Reference

Download or read book Machine Learning Pocket Reference written by Matt Harrison and published by O'Reilly Media. This book was released on 2019-08-27 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines

Book Data Pipelines Pocket Reference

Download or read book Data Pipelines Pocket Reference written by James Densmore and published by O'Reilly Media. This book was released on 2021-02-10 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting

Book Data Scientist Pocket Guide

Download or read book Data Scientist Pocket Guide written by Mohamed Sabri and published by BPB Publications. This book was released on 2021-06-24 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover one of the most complete dictionaries in data science. KEY FEATURES ● Simplified understanding of complex concepts, terms, terminologies, and techniques. ● Combined glossary of machine learning, mathematics, and statistics. ● Chronologically arranged A-Z keywords with brief description. DESCRIPTION This pocket guide is a must for all data professionals in their day-to-day work processes. This book brings a comprehensive pack of glossaries of machine learning, deep learning, mathematics, and statistics. The extensive list of glossaries comprises concepts, processes, algorithms, data structures, techniques, and many more. Each of these terms is explained in the simplest words possible. This pocket guide will help you to stay up to date of the most essential terms and references used in the process of data analysis and machine learning. WHAT YOU WILL LEARN ● Get absolute clarity on every concept, process, and algorithm used in the process of data science operations. ● Keep yourself technically strong and sound-minded during data science meetings. ● Strengthen your knowledge in the field of Big data and business intelligence. WHO THIS BOOK IS FOR This book is for data professionals, data scientists, students, or those who are new to the field who wish to stay on top of industry jargon and terminologies used in the field of data science. TABLE OF CONTENTS 1. Chapter one: A 2. Chapter two: B 3. Chapter three: C 4. Chapter four: D 5. Chapter five: E 6. Chapter six: F 7. Chapter seven: G 8. Chapter eight: H 9. Chapter nine: I 10. Chapter ten: J 11. Chapter 11: K 12. Chapter 12: L 13. Chapter 13: M 14. Chapter 14: N 15. Chapter 15: O 16. Chapter 16: P 17. Chapter 17: Q 18. Chapter 18: R 19. Chapter 19 : S 20. Chapter 20 : T 21. Chapter 21 : U 22. Chapter 22 : V 23. Chapter 23: W 24. Chapter 24: X 25. Chapter 25: Y 26. Chapter 26 : Z

Book PyTorch Pocket Reference

    Book Details:
  • Author : Joe Papa
  • Publisher : O'Reilly Media
  • Release : 2021-09-14
  • ISBN : 9781492090007
  • Pages : 265 pages

Download or read book PyTorch Pocket Reference written by Joe Papa and published by O'Reilly Media. This book was released on 2021-09-14 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development--from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, GCP, or Azure, and your ML models to mobile and edge devices. Learn basic PyTorch syntax and design patterns Create custom models and data transforms Train and deploy models using a GPU and TPU Train and test a deep learning classifier Accelerate training using optimization and distributed training Access useful PyTorch libraries and the PyTorch ecosystem

Book Python Pocket Reference

    Book Details:
  • Author : Mark Lutz
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2014-01-22
  • ISBN : 144935694X
  • Pages : 215 pages

Download or read book Python Pocket Reference written by Mark Lutz and published by "O'Reilly Media, Inc.". This book was released on 2014-01-22 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated for both Python 3.4 and 2.7, this convenient pocket guide is the perfect on-the-job quick reference. Youâ??ll find concise, need-to-know information on Python types and statements, special method names, built-in functions and exceptions, commonly used standard library modules, and other prominent Python tools. The handy index lets you pinpoint exactly what you need. Written by Mark Lutzâ??widely recognized as the worldâ??s leading Python trainerâ??Python Pocket Reference is an ideal companion to Oâ??Reillyâ??s classic Python tutorials, Learning Python and Programming Python, also written by Mark. This fifth edition covers: Built-in object types, including numbers, lists, dictionaries, and more Statements and syntax for creating and processing objects Functions and modules for structuring and reusing code Pythonâ??s object-oriented programming tools Built-in functions, exceptions, and attributes Special operator overloading methods Widely used standard library modules and extensions Command-line options and development tools Python idioms and hints The Python SQL Database API

Book Machine Learning Bookcamp

Download or read book Machine Learning Bookcamp written by Alexey Grigorev and published by Simon and Schuster. This book was released on 2021-11-23 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.

Book Regular Expression Pocket Reference

Download or read book Regular Expression Pocket Reference written by Tony Stubblebine and published by "O'Reilly Media, Inc.". This book was released on 2007-07-18 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the syntax and semantics of regular expressions for Perl 5.8, Ruby, Java, PHP, C#, .NET, Python, JavaScript, and PCRE.

Book PyTorch Pocket Reference

Download or read book PyTorch Pocket Reference written by Joe Papa and published by "O'Reilly Media, Inc.". This book was released on 2021-05-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development-from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices. Learn basic PyTorch syntax and design patterns Create custom models and data transforms Train and deploy models using a GPU and TPU Train and test a deep learning classifier Accelerate training using optimization and distributed training Access useful PyTorch libraries and the PyTorch ecosystem

Book TensorFlow For Dummies

    Book Details:
  • Author : Matthew Scarpino
  • Publisher : John Wiley & Sons
  • Release : 2018-04-03
  • ISBN : 1119466210
  • Pages : 368 pages

Download or read book TensorFlow For Dummies written by Matthew Scarpino and published by John Wiley & Sons. This book was released on 2018-04-03 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become a machine learning pro! Google TensorFlow has become the darling of financial firms and research organizations, but the technology can be intimidating and the learning curve is steep. Luckily, TensorFlow For Dummies is here to offer you a friendly, easy-to-follow book on the subject. Inside, you’ll find out how to write applications with TensorFlow, while also grasping the concepts underlying machine learning—all without ever losing your cool! Machine learning has become ubiquitous in modern society, and its applications include language translation, robotics, handwriting analysis, financial prediction, and image recognition. TensorFlow is Google's preeminent toolset for machine learning, and this hands-on guide makes it easy to understand, even for those without a background in artificial intelligence. Install TensorFlow on your computer Learn the fundamentals of statistical regression and neural networks Visualize the machine learning process with TensorBoard Perform image recognition with convolutional neural networks (CNNs) Analyze sequential data with recurrent neural networks (RNNs) Execute TensorFlow on mobile devices and the Google Cloud Platform (GCP) If you’re a manager or software developer looking to use TensorFlow for machine learning, this is the book you’ll want to have close by.

Book Deep Learning with PyTorch

    Book Details:
  • Author : Luca Pietro Giovanni Antiga
  • Publisher : Simon and Schuster
  • Release : 2020-07-01
  • ISBN : 1638354073
  • Pages : 518 pages

Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Book Python Pocket Reference

Download or read book Python Pocket Reference written by Mark Lutz and published by O'Reilly Media. This book was released on 1998 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handy reference guide summarizes Python statements, built-in functions, escape and formatting codes, and other prominent Python language features.

Book C  10 Pocket Reference

    Book Details:
  • Author : Joseph Albahari
  • Publisher : "O'Reilly Media, Inc."
  • Release : 2022-01-18
  • ISBN : 1098122003
  • Pages : 222 pages

Download or read book C 10 Pocket Reference written by Joseph Albahari and published by "O'Reilly Media, Inc.". This book was released on 2022-01-18 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for quick answers for using C# 10? This tightly focused and practical guide tells you exactly what you need to know without long intros or bloated samples. Succinct and easy to browse, this pocket reference is an ideal quick source of information. If you know Java, C++, or an earlier C# version, this guide will help you get rapidly up to speed. All programs and code snippets are available as interactive samples in LINQPad. You can edit these samples and instantly see the results without needing to set up projects in Visual Studio. Written by the authors of C# 9.0 in a Nutshell, this pocket reference covers: C# fundamentals and features new to C# 10 Advanced topics like operator overloading, type constraints, nullable types, operator lifting, closures, patterns, and asynchronous functions LINQ: sequences, lazy execution, standard query operators, and query expressions Unsafe code and pointers, custom attributes, preprocessor directives, and XML documentation

Book Tableau Desktop Pocket Reference

Download or read book Tableau Desktop Pocket Reference written by Ryan Sleeper and published by "O'Reilly Media, Inc.". This book was released on 2021-01-21 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a crowded field of data visualization and analytics tools, Tableau Desktop has emerged as the clear leader. This is partly due to its ease of use, but once you dive into Tableau's extensive feature set, you'll understand just how powerful and flexible this software can be for your business or organization. With this handy pocket reference, author Ryan Sleeper (Innovative Tableau) shows you how to translate the vast amounts of data into useful information. Tableau has done an amazing job of making valuable insights accessible to analysts and executives who would otherwise need to rely on IT. This book quickly guides you through Tableau Desktop's learning curve. You'll learn: How to shape data for use with Tableau Desktop How to create the most effective chart types Core concepts including discrete versus continuous Must-know technical features including filters, parameters, and sets Key syntax for creating the most useful analyses How to bring it all together with dashboards And more!

Book jQuery Pocket Reference

Download or read book jQuery Pocket Reference written by David Flanagan and published by O'Reilly Media. This book was released on 2010-12-09 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: "As someone who uses jQuery on a regular basis, it was surprising to discover how much of the library I’m not using. This book is indispensable for anyone who is serious about using jQuery for non-trivial applications."-- Raffaele Cecco, longtime developer of video games, including Cybernoid, Exolon, and Stormlord jQuery is the "write less, do more" JavaScript library. Its powerful features and ease of use have made it the most popular client-side JavaScript framework for the Web. Ideal for JavaScript developers at all skill levels, this book is jQuery's trusty companion: the definitive "read less, learn more" guide to the library. jQuery Pocket Reference explains everything you need to know about jQuery, completely and comprehensively. You'll learn how to: Select and manipulate document elements Alter document structure Handle and trigger events Create visual effects and animations Script HTTP with Ajax utilities Use jQuery's selectors and selection methods, utilities, plugins and more The 25-page quick reference summarizes the library, listing all jQuery methods and functions, with signatures and descriptions.

Book Ruby Pocket Reference

Download or read book Ruby Pocket Reference written by Michael Fitzgerald and published by . This book was released on 2015-08-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated for Ruby 2.2, this handy reference offers brief yet clear explanations of Ruby's core elements--from operators to blocks to documentation creation--and highlights the key features you may work with every day. Need to know the correct syntax for a conditional? Forgot the name of that String method? This book is organized to help you find the facts fast. Ruby Pocket Reference, 2nd Edition is ideal for experienced programmers who are new to Ruby. Whether you've come to Ruby because of Rails, or you want to take advantage of this clean, powerful, and expressive language for other applications, this reference will help you easily pinpoint the information you need. You'll find detailed reference material for: Keywords, operators, comments, numbers, and symbols Variables, pre-defined global variables, and regular expressions Conditional statements, method use, classes, and exception handling Methods for the BasicObject, Object, Kernel, String, Array, and Hash classes Time formatting directives New syntax since Ruby 1.9

Book Learning the Pandas Library

Download or read book Learning the Pandas Library written by Matt Harrison and published by Createspace Independent Publishing Platform. This book was released on 2016-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.