EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Low Resource Social Media Text Mining

Download or read book Low Resource Social Media Text Mining written by Shriphani Palakodety and published by Springer Nature. This book was released on 2021-10-01 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods that are unsupervised or require minimal supervision—vital in the low-resource domain. Over the past few years, rapid growth in Internet access across the globe has resulted in an explosion in user-generated text content in social media platforms. This effect is significantly pronounced in linguistically diverse areas of the world like South Asia, where over 400 million people regularly access social media platforms. YouTube, Facebook, and Twitter report a monthly active user base in excess of 200 million from this region. Natural language processing (NLP) research and publicly available resources such as models and corpora prioritize Web content authored primarily by a Western user base. Such content is authored in English by a user base fluent in the language and can be processed by a broad range of off-the-shelf NLP tools. In contrast, text from linguistically diverse regions features high levels of multilinguality, code-switching, and varied language skill levels. Resources like corpora and models are also scarce. Due to these factors, newer methods are needed to process such text. This book is designed for NLP practitioners well versed in recent advances in the field but unfamiliar with the landscape of low-resource multilingual NLP. The contents of this book introduce the various challenges associated with social media content, quantify these issues, and provide solutions and intuition. When possible, the methods discussed are evaluated on real-world social media data sets to emphasize their robustness to the noisy nature of the social media environment. On completion of the book, the reader will be well-versed with the complexity of text-mining in multilingual, low-resource environments; will be aware of a broad set of off-the-shelf tools that can be applied to various problems; and will be able to conduct sophisticated analyses of such text.

Book Low Resource Social Media Text Mining

Download or read book Low Resource Social Media Text Mining written by Shriphani Palakodety and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods that are unsupervised or require minimal supervision-vital in the low-resource domain. Over the past few years, rapid growth in Internet access across the globe has resulted in an explosion in user-generated text content in social media platforms. This effect is significantly pronounced in linguistically diverse areas of the world like South Asia, where over 400 million people regularly access social media platforms. YouTube, Facebook, and Twitter report a monthly active user base in excess of 200 million from this region. Natural language processing (NLP) research and publicly available resources such as models and corpora prioritize Web content authored primarily by a Western user base. Such content is authored in English by a user base fluent in the language and can be processed by a broad range of off-the-shelf NLP tools. In contrast, text from linguistically diverse regions features high levels of multilinguality, code-switching, and varied language skill levels. Resources like corpora and models are also scarce. Due to these factors, newer methods are needed to process such text. This book is designed for NLP practitioners well versed in recent advances in the field but unfamiliar with the landscape of low-resource multilingual NLP. The contents of this book introduce the various challenges associated with social media content, quantify these issues, and provide solutions and intuition. When possible, the methods discussed are evaluated on real-world social media data sets to emphasize their robustness to the noisy nature of the social media environment. On completion of the book, the reader will be well-versed with the complexity of text-mining in multilingual, low-resource environments; will be aware of a broad set of off-the-shelf tools that can be applied to various problems; and will be able to conduct sophisticated analyses of such text.

Book Speech and Language Technologies for Low Resource Languages

Download or read book Speech and Language Technologies for Low Resource Languages written by Bharathi Raja Chakravarthi and published by Springer Nature. This book was released on with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Speech and Language Technologies for Low Resource Languages

Download or read book Speech and Language Technologies for Low Resource Languages written by Anand Kumar M and published by Springer Nature. This book was released on 2023-05-28 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes refereed proceedings from the First International Conference on Speech and Language Technologies for Low-resource Languages, SPELLL 2022, held in Kalavakkam, India, in November 2022. The 25 presented papers were thoroughly reviewed and selected from 70 submissions. The papers are organised in the following topical sections: ​language resources; language technologies; speech technologies; multimodal data analysis; fake news detection in low-resource languages (regional-fake); low resource cross-domain, cross-lingualand cross-modal offensie content analysis (LC4).

Book Mining Social Media

    Book Details:
  • Author : Lam Thuy Vo
  • Publisher : No Starch Press
  • Release : 2019-11-25
  • ISBN : 1593279167
  • Pages : 210 pages

Download or read book Mining Social Media written by Lam Thuy Vo and published by No Starch Press. This book was released on 2019-11-25 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: BuzzFeed News Senior Reporter Lam Thuy Vo explains how to mine, process, and analyze data from the social web in meaningful ways with the Python programming language. Did fake Twitter accounts help sway a presidential election? What can Facebook and Reddit archives tell us about human behavior? In Mining Social Media, senior BuzzFeed reporter Lam Thuy Vo shows you how to use Python and key data analysis tools to find the stories buried in social media. Whether you're a professional journalist, an academic researcher, or a citizen investigator, you'll learn how to use technical tools to collect and analyze data from social media sources to build compelling, data-driven stories. Learn how to: Write Python scripts and use APIs to gather data from the social web Download data archives and dig through them for insights Inspect HTML downloaded from websites for useful content Format, aggregate, sort, and filter your collected data using Google Sheets Create data visualizations to illustrate your discoveries Perform advanced data analysis using Python, Jupyter Notebooks, and the pandas library Apply what you've learned to research topics on your own Social media is filled with thousands of hidden stories just waiting to be told. Learn to use the data-sleuthing tools that professionals use to write your own data-driven stories.

Book Empowering Low Resource Languages With NLP Solutions

Download or read book Empowering Low Resource Languages With NLP Solutions written by Pakray, Partha and published by IGI Global. This book was released on 2024-02-27 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: In our increasingly interconnected world, low-resource languages face the threat of oblivion. These linguistic gems, often spoken by marginalized communities, are at risk of fading away due to limited data and resources. The neglect of these languages not only erodes cultural diversity but also hinders effective communication, education, and social inclusion. Academics, practitioners, and policymakers grapple with the urgent need for a comprehensive solution to preserve and empower these vulnerable languages. Empowering Low-Resource Languages With NLP Solutions is a pioneering book that stands as the definitive answer to the pressing problem at hand. It tackles head-on the challenges that low-resource languages face in the realm of Natural Language Processing (NLP). Through real-world case studies, expert insights, and a comprehensive array of topics, this book equips its readers—academics, researchers, practitioners, and policymakers—with the tools, strategies, and ethical considerations needed to address the crisis facing low-resource languages.

Book Analysis of Images  Social Networks and Texts

Download or read book Analysis of Images Social Networks and Texts written by Dmitry I. Ignatov and published by Springer Nature. This book was released on with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Data Centric Artificial Intelligence for Multidisciplinary Applications

Download or read book Data Centric Artificial Intelligence for Multidisciplinary Applications written by Parikshit N Mahalle and published by CRC Press. This book was released on 2024-06-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the need for a data‐centric AI approach and its application in the multidisciplinary domain, compared to a model‐centric approach. It examines the methodologies for data‐centric approaches, the use of data‐centric approaches in different domains, the need for edge AI and how it differs from cloud‐based AI. It discusses the new category of AI technology, "data‐centric AI" (DCAI), which focuses on comprehending, utilizing, and reaching conclusions from data. By adding machine learning and big data analytics tools, data‐centric AI modifies this by enabling it to learn from data rather than depending on algorithms. It can therefore make wiser choices and deliver more precise outcomes. Additionally, it has the potential to be significantly more scalable than conventional AI methods. • Includes a collection of case studies with experimentation results to adhere to the practical approaches • Examines challenges in dataset generation, synthetic datasets, analysis, and prediction algorithms in stochastic ways • Discusses methodologies to achieve accurate results by improving the quality of data • Comprises cases in healthcare and agriculture with implementation and impact of quality data in building AI applications

Book Sentiment Analysis in Social Networks

Download or read book Sentiment Analysis in Social Networks written by Federico Alberto Pozzi and published by Morgan Kaufmann. This book was released on 2016-10-06 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network analysis Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network mining Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics

Book Text Mining

    Book Details:
  • Author : Fouad Sabry
  • Publisher : One Billion Knowledgeable
  • Release : 2023-07-05
  • ISBN :
  • Pages : 131 pages

Download or read book Text Mining written by Fouad Sabry and published by One Billion Knowledgeable. This book was released on 2023-07-05 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: What Is Text Mining Text mining, also known as text data mining (TDM) or text analytics, is the technique of extracting useful information from text. Related terms include text data mining (TDM) and text analytics. It is "the discovery by computer of new, previously unknown information by automatically extracting information from various written resources," according to one definition of the term. Websites, books, emails, reviews, and articles are all examples of written materials that may be utilized. Typically, the best way to acquire high-quality information is to construct patterns and trends through the use of methods such as statistical pattern learning. According to Hotho et al. (2005), we are able to differentiate between three distinct perspectives of text mining. These perspectives are information extraction, data mining, and a process known as knowledge discovery in databases (KDD). Text mining often entails the process of structuring the text that is input, determining patterns within the data that has been structured, and then lastly evaluating and interpreting the result of the mining process. When discussing text mining, the term "high quality" typically relates to some combination of the concepts of relevance, novelty, and interest. Text categorization, text clustering, concept/entity extraction, generation of granular taxonomies, sentiment analysis, document summarizing, and entity relation modeling are all examples of typical text mining activities. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Text Mining Chapter 2: Natural Language Processing Chapter 3: Data Mining Chapter 4: Information Extraction Chapter 5: Semantic Similarity Chapter 6: Unstructured Data Chapter 7: Biomedical Text Mining Chapter 8: Sentiment Analysis Chapter 9: Word Embedding Chapter 10: Social Media Mining (II) Answering the public top questions about text mining. (III) Real world examples for the usage of text mining in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of text mining' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of text mining.

Book An Introduction to Text Mining

Download or read book An Introduction to Text Mining written by Gabe Ignatow and published by SAGE Publications. This book was released on 2017-09-22 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students in social science courses communicate, socialize, shop, learn, and work online. When they are asked to collect data for course projects they are often drawn to social media platforms and other online sources of textual data. There are many software packages and programming languages available to help students collect data online, and there are many texts designed to help with different forms of online research, from surveys to ethnographic interviews. But there is no textbook available that teaches students how to construct a viable research project based on online sources of textual data such as newspaper archives, site user comment archives, digitized historical documents, or social media user comment archives. Gabe Ignatow and Rada F. Mihalcea's new text An Introduction to Text Mining will be a starting point for undergraduates and first-year graduate students interested in collecting and analyzing textual data from online sources, and will cover the most critical issues that students must take into consideration at all stages of their research projects, including: ethical and philosophical issues; issues related to research design; web scraping and crawling; strategic data selection; data sampling; use of specific text analysis methods; and report writing.

Book Text and Social Media Analytics for Fake News and Hate Speech Detection

Download or read book Text and Social Media Analytics for Fake News and Hate Speech Detection written by Hemant Kumar Soni and published by CRC Press. This book was released on 2024-08-21 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Identifying and stopping the dissemination of fabricated news, hate speech, or deceptive information camouflaged as legitimate news poses a significant technological hurdle. This book presents emergent methodologies and technological approaches of natural language processing through machine learning for counteracting the spread of fake news and hate speech on social media platforms. • Covers various approaches, algorithms, and methodologies for fake news and hate speech detection. • Explains the automatic detection and prevention of fake news and hate speech through paralinguistic clues on social media using artificial intelligence. • Discusses the application of machine learning models to learn linguistic characteristics of hate speech over social media platforms. • Emphasizes the role of multilingual and multimodal processing to detect fake news. • Includes research on different optimization techniques, case studies on the identification, prevention, and social impact of fake news, and GitHub repository links to aid understanding. The text is for professionals and scholars of various disciplines interested in fake news and hate speech detection.

Book Digital Analytics for Marketing

Download or read book Digital Analytics for Marketing written by A. Karim Feroz and published by Taylor & Francis. This book was released on 2024-01-25 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Digital Analytics for Marketing provides students with a comprehensive overview of the tools needed to measure digital activity and implement best practices when using data to inform marketing strategy. It is the first text of its kind to introduce students to analytics platforms from a practical marketing perspective. Demonstrating how to integrate large amounts of data from web, digital, social, and search platforms, this helpful guide offers actionable insights into data analysis, explaining how to "connect the dots" and "humanize" information to make effective marketing decisions. The authors cover timely topics, such as social media, web analytics, marketing analytics challenges, and dashboards, helping students to make sense of business measurement challenges, extract insights, and take effective actions. The book’s experiential approach, combined with chapter objectives, summaries, and review questions, will engage readers, deepening their learning by helping them to think outside the box. Filled with engaging, interactive exercises and interesting insights from industry experts, this book will appeal to undergraduate and postgraduate students of digital marketing, online marketing, and analytics. Online support materials for this book include an instructor’s manual, test bank, and PowerPoint slides.

Book AI in and for Africa

    Book Details:
  • Author : Susan Brokensha
  • Publisher : CRC Press
  • Release : 2023-05-02
  • ISBN : 1000869644
  • Pages : 141 pages

Download or read book AI in and for Africa written by Susan Brokensha and published by CRC Press. This book was released on 2023-05-02 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: AI in and for Africa: A Humanistic Perspective explores the convoluted intersection of artificial intelligence (AI) with Africa’s unique socio-economic realities. This book is the first of its kind to provide a comprehensive overview of how AI is currently being deployed on the African continent. Given the existence of significant disparities in Africa related to gender, race, labour, and power, the book argues that the continent requires different AI solutions to its problems, ones that are not founded on technological determinism or exclusively on the adoption of Eurocentric or Western-centric worldviews. It embraces a decolonial approach to exploring and addressing issues such as AI’s diversity crisis, the absence of ethical policies around AI that are tailor-made for Africa, the ever-widening digital divide, and the ongoing practice of dismissing African knowledge systems in the contexts of AI research and education. Although the book suggests a number of humanistic strategies with the goal of ensuring that Africa does not appropriate AI in a manner that is skewed in favour of a privileged few, it does not support the notion that the continent should simply opt for a "one-size-fits-all" solution either. Rather, in light of Africa’s rich diversity, the book embraces the need for plurality within different regions’ AI ecosystems. The book advocates that Africa-inclusive AI policies incorporate a relational ethics of care which explicitly addresses how Africa’s unique landscape is entwined in an AI ecosystem. The book also works to provide actionable AI tenets that can be incorporated into policy documents that suit Africa’s needs. This book will be of great interest to researchers, students, and readers who wish to critically appraise the different facets of AI in the context of Africa, across many areas that run the gamut from education, gender studies, and linguistics to agriculture, data science, and economics. This book is of special appeal to scholars in disciplines including anthropology, computer science, philosophy, and sociology, to name a few.

Book Text Mining

    Book Details:
  • Author : Gabe Ignatow
  • Publisher : SAGE Publications
  • Release : 2016-04-20
  • ISBN : 1483369323
  • Pages : 189 pages

Download or read book Text Mining written by Gabe Ignatow and published by SAGE Publications. This book was released on 2016-04-20 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively.

Book Text Mining and Analysis

    Book Details:
  • Author : Dr. Goutam Chakraborty
  • Publisher : SAS Institute
  • Release : 2014-11-22
  • ISBN : 1612907873
  • Pages : 340 pages

Download or read book Text Mining and Analysis written by Dr. Goutam Chakraborty and published by SAS Institute. This book was released on 2014-11-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.

Book Mining Text Data

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer Science & Business Media
  • Release : 2012-02-03
  • ISBN : 1461432235
  • Pages : 527 pages

Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.