EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Low Rank and Sparse Modeling for Visual Analysis

Download or read book Low Rank and Sparse Modeling for Visual Analysis written by Yun Fu and published by Springer. This book was released on 2014-10-30 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.

Book Low Rank and Sparse Modeling for Data Analysis

Download or read book Low Rank and Sparse Modeling for Data Analysis written by Zhao Kang and published by . This book was released on 2017 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, many real-world problems must deal with collections of high-dimensional data. High dimensional data usually have intrinsic low-dimensional representations, which are suited for subsequent analysis or processing. Therefore, finding low-dimensional representations is an essential step in many machine learning and data mining tasks. Low-rank and sparse modeling are emerging mathematical tools dealing with uncertainties of real-world data. Leveraging on the underlying structure of data, low-rank and sparse modeling approaches have achieved impressive performance in many data analysis tasks. Since the general rank minimization problem is computationally NP-hard, the convex relaxation of original problem is often solved. One popular heuristic method is to use the nuclear norm to approximate the rank of a matrix. Despite the success of nuclear norm minimization in capturing the low intrinsic-dimensionality of data, the nuclear norm minimizes not only the rank, but also the variance of matrix and may not be a good approximation to the rank function in practical problems. To mitigate above issue, this thesis proposes several nonconvex functions to approximate the rank function. However, It is often difficult to solve nonconvex problem. In this thesis, an optimization framework for nonconvex problem is further developed. The effectiveness of this approach is examined on several important applications, including matrix completion, robust principle component analysis, clustering, and recommender systems. Another issue associated with current clustering methods is that they work in two separate steps including similarity matrix computation and subsequent spectral clustering. The learned similarity matrix may not be optimal for subsequent clustering. Therefore, a unified algorithm framework is developed in this thesis. To capture the nonlinear relations among data points, we formulate this method in kernel space. Furthermore, the obtained continuous spectral solutions could severely deviate from the true discrete cluster labels, a discrete transformation is further incorporated in our model. Finally, our framework can simultaneously learn similarity matrix, kernel, and discrete cluster labels. The performance of the proposed algorithms is established through extensive experiments. This framework can be easily extended to semi-supervised classification.

Book Deep Learning through Sparse and Low Rank Modeling

Download or read book Deep Learning through Sparse and Low Rank Modeling written by Zhangyang Wang and published by Academic Press. This book was released on 2019-04-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models Provides tactics on how to build and apply customized deep learning models for various applications

Book High Dimensional Data Analysis with Low Dimensional Models

Download or read book High Dimensional Data Analysis with Low Dimensional Models written by John Wright and published by Cambridge University Press. This book was released on 2022-01-13 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Book Generalized Low Rank Models

Download or read book Generalized Low Rank Models written by Madeleine Udell and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Book Handbook of Robust Low Rank and Sparse Matrix Decomposition

Download or read book Handbook of Robust Low Rank and Sparse Matrix Decomposition written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-05-27 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Book Sparse and Low Rank Modeling on High Dimensional Data

Download or read book Sparse and Low Rank Modeling on High Dimensional Data written by Xiao Bian and published by . This book was released on 2014 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Representation for Data Analytics

Download or read book Robust Representation for Data Analytics written by Sheng Li and published by Springer. This book was released on 2017-08-09 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Book High Dimensional Data Analysis with Low Dimensional Models

Download or read book High Dimensional Data Analysis with Low Dimensional Models written by John Wright and published by Cambridge University Press. This book was released on 2022-01-13 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connects fundamental mathematical theory with real-world problems, through efficient and scalable optimization algorithms.

Book Low Rank Models in Visual Analysis

Download or read book Low Rank Models in Visual Analysis written by Zhouchen Lin and published by Academic Press. This book was released on 2017-06-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems. Presents a self-contained, up-to-date introduction that covers underlying theory, algorithms and the state-of-the-art in current applications Provides a full and clear explanation of the theory behind the models Includes detailed proofs in the appendices

Book Linear Algebra for Data Science  Machine Learning  and Signal Processing

Download or read book Linear Algebra for Data Science Machine Learning and Signal Processing written by Jeffrey A. Fessler and published by Cambridge University Press. This book was released on 2024-04-30 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master matrix methods via engaging data-driven applications, aided by classroom-tested quizzes, homework exercises and online Julia demos.

Book Background Modeling and Foreground Detection for Video Surveillance

Download or read book Background Modeling and Foreground Detection for Video Surveillance written by Thierry Bouwmans and published by CRC Press. This book was released on 2014-07-25 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Background modeling and foreground detection are important steps in video processing used to detect robustly moving objects in challenging environments. This requires effective methods for dealing with dynamic backgrounds and illumination changes as well as algorithms that must meet real-time and low memory requirements. Incorporating both established and new ideas, Background Modeling and Foreground Detection for Video Surveillance provides a complete overview of the concepts, algorithms, and applications related to background modeling and foreground detection. Leaders in the field address a wide range of challenges, including camera jitter and background subtraction. The book presents the top methods and algorithms for detecting moving objects in video surveillance. It covers statistical models, clustering models, neural networks, and fuzzy models. It also addresses sensors, hardware, and implementation issues and discusses the resources and datasets required for evaluating and comparing background subtraction algorithms. The datasets and codes used in the text, along with links to software demonstrations, are available on the book’s website. A one-stop resource on up-to-date models, algorithms, implementations, and benchmarking techniques, this book helps researchers and industry developers understand how to apply background models and foreground detection methods to video surveillance and related areas, such as optical motion capture, multimedia applications, teleconferencing, video editing, and human–computer interfaces. It can also be used in graduate courses on computer vision, image processing, real-time architecture, machine learning, or data mining.

Book Tensor Computation for Data Analysis

Download or read book Tensor Computation for Data Analysis written by Yipeng Liu and published by Springer Nature. This book was released on 2021-08-31 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.

Book Low Rank Approximation

Download or read book Low Rank Approximation written by Ivan Markovsky and published by Springer. This book was released on 2018-08-03 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory with a range of applications from systems and control theory to psychometrics being described. Special knowledge of the application fields is not required. The second edition of /Low-Rank Approximation/ is a thoroughly edited and extensively rewritten revision. It contains new chapters and sections that introduce the topics of: • variable projection for structured low-rank approximation;• missing data estimation;• data-driven filtering and control;• stochastic model representation and identification;• identification of polynomial time-invariant systems; and• blind identification with deterministic input model. The book is complemented by a software implementation of the methods presented, which makes the theory directly applicable in practice. In particular, all numerical examples in the book are included in demonstration files and can be reproduced by the reader. This gives hands-on experience with the theory and methods detailed. In addition, exercises and MATLAB^® /Octave examples will assist the reader quickly to assimilate the theory on a chapter-by-chapter basis. “Each chapter is completed with a new section of exercises to which complete solutions are provided.” Low-Rank Approximation (second edition) is a broad survey of the Low-Rank Approximation theory and applications of its field which will be of direct interest to researchers in system identification, control and systems theory, numerical linear algebra and optimization. The supplementary problems and solutions render it suitable for use in teaching graduate courses in those subjects as well.

Book Generalized Low Rank Models

Download or read book Generalized Low Rank Models written by Madeleine Udell and published by . This book was released on 2016 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well-known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Book Pattern Recognition and Computer Vision

Download or read book Pattern Recognition and Computer Vision written by Yuxin Peng and published by Springer Nature. This book was released on 2020-10-11 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 12305, 12306, and 12307 constitutes the refereed proceedings of the Third Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2020, held virtually in Nanjing, China, in October 2020. The 158 full papers presented were carefully reviewed and selected from 402 submissions. The papers have been organized in the following topical sections: Part I: Computer Vision and Application, Part II: Pattern Recognition and Application, Part III: Machine Learning.

Book Machine Learning Techniques on Gene Function Prediction Volume II

Download or read book Machine Learning Techniques on Gene Function Prediction Volume II written by Quan Zou and published by Frontiers Media SA. This book was released on 2023-04-11 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: