EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to the Finite Difference Time Domain  FDTD  Method for Electromagnetics

Download or read book Introduction to the Finite Difference Time Domain FDTD Method for Electromagnetics written by Stephen Gedney and published by Springer Nature. This book was released on 2022-05-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Book Imaging Optics

    Book Details:
  • Author : Joseph Braat
  • Publisher : Cambridge University Press
  • Release : 2019-05-02
  • ISBN : 1108428088
  • Pages : 987 pages

Download or read book Imaging Optics written by Joseph Braat and published by Cambridge University Press. This book was released on 2019-05-02 with total page 987 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and self-contained text for researchers and professionals presents a detailed account of optical imaging from the viewpoint of both ray and wave optics.

Book Adaptive Mesh Refinement in Time Domain Numerical Electromagnetics

Download or read book Adaptive Mesh Refinement in Time Domain Numerical Electromagnetics written by Costas Sarris and published by Springer Nature. This book was released on 2022-05-31 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies are aimed at optimally tailoring the computational resources needed for the wideband simulation of microwave and optical structures to their geometry, as well as the nature of the field solutions they support. That is achieved by the development of robust “adaptive meshing” approaches, which amount to varying the total number of unknown field quantities in the course of the simulation to adapt to temporally or spatially localized field features. While mesh adaptation is an extremely desirable FDTD feature, known to reduce simulation times by orders of magnitude, it is not always robust. The specific techniques presented in this book are characterized by stability and robustness. Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities). Optical power splitters, Y-junctions, and couplers Optical ring resonators Nonlinear optical waveguides. Building on first principles of time-domain electromagnetic simulations, this book presents advanced concepts and cutting-edge modeling techniques in an intuitive way for programmers, engineers, and graduate students. It is designed to provide a solid reference for highly efficient time-domain solvers, employed in a wide range of exciting applications in microwave/millimeter-wave and optical engineering.

Book Time Domain Methods for Microwave Structures

Download or read book Time Domain Methods for Microwave Structures written by Tatsuo Itoh and published by Wiley-IEEE Press. This book was released on 1998 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book thoroughly explains the application of Finite-difference Time-domain (FDTD) method to microwave structures. Providing the reader with the most comprehensive collection of material available on this subject, each chapter is composed of an introductory section that addresses the theoretical background of a specific component of the FDTD method and a collection of reprints of the most important papers. Each chapter is contributed by a well-known authority in the field and contains illustrative examples. Topics covered include: * The numerical issues * Geometry description of microwave structures * Methods to reduce the requirements for excessive computational resources * Parallel and vector processing All the topics covered in this book are essential components for successful application of the FDTD method to realistic structures."

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 1042 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Scaled Boundary Finite Element Method

Download or read book The Scaled Boundary Finite Element Method written by Chongmin Song and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.

Book Microwave Circuit Modeling Using Electromagnetic Field Simulation

Download or read book Microwave Circuit Modeling Using Electromagnetic Field Simulation written by Daniel G. Swanson and published by Artech House. This book was released on 2003 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation This practical "how to" book is an ideal introduction to electromagnetic field-solvers. Where most books in this area are strictly theoretical, this unique resource provides engineers with helpful advice on selecting the right tools for their RF (radio frequency) and high-speed digital circuit design work

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Electromagnetic Simulation Using the FDTD Method

Download or read book Electromagnetic Simulation Using the FDTD Method written by Dennis M. Sullivan and published by John Wiley & Sons. This book was released on 2013-05-17 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Book The Finite Difference Time Domain Method for Electromagnetics

Download or read book The Finite Difference Time Domain Method for Electromagnetics written by Karl S. Kunz and published by CRC Press. This book was released on 1993-05-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Science Abstracts

Download or read book Science Abstracts written by and published by . This book was released on 1993 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 1860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Finite difference Time domain Method

Download or read book Parallel Finite difference Time domain Method written by Wenhua Yu and published by Artech House Publishers. This book was released on 2006 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate th.