Download or read book Linear Vector Spaces and Cartesian Tensors written by James Kenyon Knowles and published by Oxford University Press on Demand. This book was released on 1998 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Vector Spaces and Cartesian Tensors is primarily concerned with the theory of finite dimensional Euclidian spaces. It makes a careful distinction between real and complex spaces, with an emphasis on real spaces, and focuses on those elements of the theory that are especially important in applications to continuum mechanics. The geometric content of the theory and the distinction between matrices and tensors are emphasized, and absolute- and component-notation are both employed. While the mathematics is rigorous, the style is casual. Chapter 1 deals with the basic notion of a linear vector space; many examples of such spaces are given, including infinite-dimensional ones. The idea of a linear transformation of a vector space into itself is introduced and explored in Chapter 2. Chapter 3 deals with linear transformations on finite dimensional real Euclidean spaces (i.e., Cartesian tensors), focusing on symmetric tensors, orthogonal tensors, and the interaction of both in the kinetically important polar decomposition theorem. Chapter 4 exploits the ideas introduced in the first three chapters in order to construct the theory of tensors of rank four, which are important in continuum mechanics. Finally, Chapter 5 concentrates on applications of the earlier material to the kinematics of continua, to the notion of isotropic materials, to the concept of scalar invariant functions of tensors, and to linear dynamical systems. Exercises and problems of varying degrees of difficulty are included at the end of each chapter. Two appendices further enhance the text: the first is a short list of mathematical results that students should already be familiar with, and the second contains worked out solutions to almost all of the problems. Offering many unusual examples and applications, Linear Vector Spaces and Cartesian Tensors serves as an excellent text for advanced undergraduate or first year graduate courses in engineering mathematics and mechanics. Its clear writing style also makes this work useful as a self-study guide.
Download or read book Linear Vector Spaces and Cartesian Tensors written by and published by . This book was released on 1998 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Vectors and Tensors written by Ray M. Bowen and published by Springer. This book was released on 1976-05-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.
Download or read book Mathematical Physics written by S.D. Joglekar and published by Universities Press. This book was released on 2005 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Tensors and Group Theory for Physicists written by Nadir Jeevanjee and published by Birkhäuser. This book was released on 2015-03-11 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
Download or read book An Introduction to Linear Algebra and Tensors written by M. A. Akivis and published by Courier Corporation. This book was released on 2012-07-25 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Download or read book Matrix Methods and Vector Spaces in Physics written by Sharma and published by PHI Learning Pvt. Ltd.. This book was released on 2009-12 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: They have wide applications in a number of subjects ranging from solid state physics, solid/fluid mechanics to relativity and electromagnetics. This well-written book gives, in an easy-to-read style, a step-by-step and comprehensive understanding about the various concepts, theories and applications of vector spaces, matrices and tensors. The book equips the reader with the fundamental knowledge in such subjects as matrix theory, linear algebraic equations, applications of eigenvalues and eigenvectors, diagonalisation process, quadratic forms, Cartesian tensors and more.
Download or read book A Student s Guide to Vectors and Tensors written by Daniel A. Fleisch and published by Cambridge University Press. This book was released on 2011-09-22 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.
Download or read book Vector Spaces Matrices and Tensors in Physics written by M. C. Jain and published by . This book was released on 2018-04-30 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector spaces, matrices, and tensors in physics form an essential part of the mathematical background required by physicists. This book is written primarily as textbook for undergraduate and postgraduate students and as a reference book for working physicists. Special emphasis is given to topics relevant to physics, for example linear independence and dependence of vectors, inner product, orthonormality, matrices as representations of linear transformations on vector spaces, similarity, eigenvalues, eigenvectors, diagonalization of matrices, expressing various physical quantities as tensors, tensorial formulation of vector algebra, calculus and geometry. The role of orthogonal, hermitian and unitary matrices in physics is highlighted.
Download or read book Irreducible Cartesian Tensors written by Robert F. Snider and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-04 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph covers the concept of cartesian tensors with the needs and interests of physicists, chemists and other physical scientists in mind. After introducing elementary tensor operations and rotations, spherical tensors, combinations of tensors are introduced, also covering Clebsch-Gordan coefficients. After this, readers from the physical sciences will find generalizations of the results to spinors and applications to quantum mechanics.
Download or read book Vectors Pure and Applied written by T. W. Körner and published by Cambridge University Press. This book was released on 2013 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains both the how and the why of linear algebra to get students thinking like mathematicians.
Download or read book Tensors Differential Forms and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Download or read book Introduction to Continuum Mechanics written by Sudhakar Nair and published by Cambridge University Press. This book was released on 2009-03-16 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats solids and fluids in a balanced manner, using thermodynamic restrictions on the relation between applied forces and material responses. This unified approach can be appreciated by engineers, physicists, and applied mathematicians with some background in engineering mechanics. It has many examples and about 150 exercises for students to practise. The higher mathematics needed for a complete understanding is provided in the early chapters. This subject is essential for engineers involved in experimental or numerical modelling of material behaviour.
Download or read book Einstein Gravity in a Nutshell written by A. Zee and published by Princeton University Press. This book was released on 2013-05-05 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ideal introduction to Einstein's general theory of relativity This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers)
Download or read book How Mathematicians Think written by William Byers and published by Princeton University Press. This book was released on 2010-05-02 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically--even algorithmically--from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results. Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure. The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory? Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.
Download or read book Tensor Categories written by Pavel Etingof and published by American Mathematical Soc.. This book was released on 2016-08-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.
Download or read book Continuum Mechanics and Linear Elasticity written by Ciprian D. Coman and published by Springer Nature. This book was released on 2019-11-02 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).