EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Likelihood estimation for generalized mixed exponential distributions

Download or read book Likelihood estimation for generalized mixed exponential distributions written by Carl M. Harris and published by . This book was released on 1984 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: The class of probability functions expressed as linear (not necessarily convex) combinations of negative exponential densities is dense in the set of all distribution functions on the nonnegative reals. Because of this and resultant mathematical properties, such forms would appear to have excellent potential for wide application in stochastic modeling. This work documents the development and testing of a practical procedure for maximum-likelihood estimation for these generalized exponential mixtures. The algorithm offered for the problem is of the Jacobi type and guarantees that the result will provide a legitimate probability function of the prescribed type. Extensive testing has been performed and results are very favorable: convergence is rapid and the use of computer resources rather limited. (Author).

Book Loss Models

    Book Details:
  • Author : Stuart A. Klugman
  • Publisher : John Wiley & Sons
  • Release : 2012-01-25
  • ISBN : 0470391332
  • Pages : 758 pages

Download or read book Loss Models written by Stuart A. Klugman and published by John Wiley & Sons. This book was released on 2012-01-25 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.

Book Matrix Exponential Distributions in Applied Probability

Download or read book Matrix Exponential Distributions in Applied Probability written by Mogens Bladt and published by Springer. This book was released on 2017-05-18 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1985 with total page 1346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Stress strength Model and Its Generalizations

Download or read book The Stress strength Model and Its Generalizations written by Samuel Kotz and published by World Scientific. This book was released on 2003 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book presents developments in a remarkable field ofinquiry in statistical/probability theory the stressOCostrengthmodel.Many papers in the field include the enigmatic words"P"("X"Y") or something similar in thetitle."

Book NBS Special Publication

Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Probability Distributions Used in Reliability Engineering

Download or read book Probability Distributions Used in Reliability Engineering written by Andrew N O'Connor and published by RIAC. This book was released on 2011 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.

Book Parameter Estimation of the Mixed Generalized Gamma Distribution Using Maximum Likelihood Estimation and Minimum Distance Estimation

Download or read book Parameter Estimation of the Mixed Generalized Gamma Distribution Using Maximum Likelihood Estimation and Minimum Distance Estimation written by Dean G. Boerrigter and published by . This book was released on 1998-03-01 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Generalized Gamma is an extremely flexible distribution that is useful for reliability modeling. Among its many special cases are the Weibull and Exponential distributions. A mixture of Generalized Gamma Distributions is even more useful because multiple causes of failure can he simultaneously modeled. This research studied parameter estimation of the special cases of the Mixed Generalized Gamma Distribution and built upon them until the full nine- parameter distribution was being estimated. First, special cases of a single Generalized Gamma Distribution were estimated. Next, mixtures of Exponential distributions with both known and unknown location parameters were estimated. Next, mixtures of Weibull distributions with both known and unknown location parameters were estimated. Lastly, the full nine- parameter Mixed Generalized Gamma Distribution was estimated. Two techniques were used to estimate the parameters of each distribution. The first technique used was the Method of Maximum Likelihood. The log likelihood equation was maximized using a Genetic Algorithm. The second technique used was the Method of Minimum Distance. This technique takes the Maximum Likelihood parameter estimate as initial estimate. With this initial estimate, the mixture and the first location parameter are sequentially varied to minimize the Anderson-Darling statistic between the estimated cumulative distribution function and the empirical distribution function. These two parameters are then fixed at their Minimum Distance values and the remaining parameters are re-estimated using Maximum Likelihood. Minimum Distance Estimation was demonstrated to improve the parameter estimates from Maximum Likelihood for almost all of the special case distributions tested.

Book Finite Mixture Distributions

    Book Details:
  • Author : B. Everitt
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-08
  • ISBN : 9400958978
  • Pages : 148 pages

Download or read book Finite Mixture Distributions written by B. Everitt and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population.

Book Mixed Models

    Book Details:
  • Author : Eugene Demidenko
  • Publisher : John Wiley & Sons
  • Release : 2005-01-28
  • ISBN : 0471726133
  • Pages : 732 pages

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2005-01-28 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous, self-contained examination of mixed model theory and application Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. Paying special attention to algorithms and their implementations, the book discusses: Modeling of complex clustered or longitudinal data Modeling data with multiple sources of variation Modeling biological variety and heterogeneity Mixed model as a compromise between the frequentist and Bayesian approaches Mixed model for the penalized log-likelihood Healthy Akaike Information Criterion (HAIC) How to cope with parameter multidimensionality How to solve ill-posed problems including image reconstruction problems Modeling of ensemble shapes and images Statistics of image processing Major results and points of discussion at the end of each chapter along with "Summary Points" sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.

Book SAS for Mixed Models

    Book Details:
  • Author : Ramon C. Littell
  • Publisher : SAS Press
  • Release : 2006
  • ISBN : 9781590475003
  • Pages : 814 pages

Download or read book SAS for Mixed Models written by Ramon C. Littell and published by SAS Press. This book was released on 2006 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: This indispensable guide to mixed models using SAS is completely revised and updated for SAS 9. Discover the latest capabilities available for a variety of applications featuring the MIXED, GLIMMIX, and NLMIXED procedures.

Book Exponential Distribution

Download or read book Exponential Distribution written by K. Balakrishnan and published by Routledge. This book was released on 2019-01-22 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: The exponential distribution is one of the most significant and widely used distribution in statistical practice. It possesses several important statistical properties, and yet exhibits great mathematical tractability. This volume provides a systematic and comprehensive synthesis of the diverse literature on the theory and applications of the expon

Book Contemporary Statistical Models for the Plant and Soil Sciences

Download or read book Contemporary Statistical Models for the Plant and Soil Sciences written by Oliver Schabenberger and published by CRC Press. This book was released on 2001-11-13 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its many origins in agronomic problems, statistics today is often unrecognizable in this context. Numerous recent methodological approaches and advances originated in other subject-matter areas and agronomists frequently find it difficult to see their immediate relation to questions that their disciplines raise. On the other hand, statisticians often fail to recognize the riches of challenging data analytical problems contemporary plant and soil science provides. The first book to integrate modern statistics with crop, plant and soil science, Contemporary Statistical Models for the Plant and Soil Sciences bridges this gap. The breadth and depth of topics covered is unusual. Each of the main chapters could be a textbook in its own right on a particular class of data structures or models. The cogent presentation in one text allows research workers to apply modern statistical methods that otherwise are scattered across several specialized texts. The combination of theory and application orientation conveys ìwhyî a particular method works and ìhowî it is put in to practice. About the downloadable resources The accompanying downloadable resources are a key component of the book. For each of the main chapters additional sections of text are available that cover mathematical derivations, special topics, and supplementary applications. It supplies the data sets and SAS code for all applications and examples in the text, macros that the author developed, and SAS tutorials ranging from basic data manipulation to advanced programming techniques and publication quality graphics. Contemporary statistical models can not be appreciated to their full potential without a good understanding of theory. They also can not be applied to their full potential without the aid of statistical software. Contemporary Statistical Models for the Plant and Soil Science provides the essential mix of theory and applications of statistical methods pertinent to research in life sciences.

Book Hybrid Censoring Know How

Download or read book Hybrid Censoring Know How written by Narayanaswamy Balakrishnan and published by Academic Press. This book was released on 2023-01-06 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Censoring Know-How: Models, Methods and Applications focuses on hybrid censoring, an important topic in censoring methodology with numerous applications. The readers will find information on the significance of censored data in theoretical and applied contexts, and descriptions of extensive data sets from life-testing experiments where these forms of data naturally occur. The existing literature on censoring methodology, life-testing procedures, and lifetime data analysis provides only hybrid censoring schemes, with little information about hybrid censoring methodologies, ideas, and statistical inferential methods. This book fills that gap, featuring statistical tools applicable to data from medicine, biology, public health, epidemiology, engineering, economics, and demography. - Presents many numerical examples to adequately illustrate all inferential methods discussed - Mentions some open problems and possible directions for future work - Reviews developments on Type-II and Type-I HCS, including the most recent research and trends - Explains why hybrid censored sampling is important in practice - Provides details about the use of HCS under different settings and on various designs of HCS - Describes the use of hybrid censoring in other reliability applications such as reliability sampling plans, step-stress testing, and quality control

Book Generalized Linear Models

Download or read book Generalized Linear Models written by Jeff Gill and published by SAGE Publications. This book was released on 2019-05-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Linear Models: A Unified Approach provides an introduction to and overview of GLMs, with each chapter carefully laying the groundwork for the next. Authors Jeff Gill and Michelle Torres provide examples using real data from multiple fields in the social sciences such as psychology, education, economics, and political science, including data on voting intentions in the 2016 U.S. Republican presidential primaries. The Second Edition also strengthens material on the exponential family form, including a new discussion on the multinomial distribution; adds more information on how to interpret results and make inferences in the chapter on estimation procedures; and has a new section on extensions to generalized linear models.

Book Maximum Likelihood Estimation and Inference

Download or read book Maximum Likelihood Estimation and Inference written by Russell B. Millar and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Book Mixed Models

    Book Details:
  • Author : Eugene Demidenko
  • Publisher : John Wiley & Sons
  • Release : 2013-08-05
  • ISBN : 1118091574
  • Pages : 768 pages

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.