EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applications of Lie Groups to Differential Equations

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Book Lie Equations  Vol  I

    Book Details:
  • Author : Antonio Kumpera
  • Publisher : Princeton University Press
  • Release : 2016-03-02
  • ISBN : 1400881730
  • Pages : 312 pages

Download or read book Lie Equations Vol I written by Antonio Kumpera and published by Princeton University Press. This book was released on 2016-03-02 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume.

Book CRC Handbook of Lie Group Analysis of Differential Equations

Download or read book CRC Handbook of Lie Group Analysis of Differential Equations written by Nail H. Ibragimov and published by CRC Press. This book was released on 1995-10-24 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.

Book Lie Equations

    Book Details:
  • Author : Antonio Kumpera
  • Publisher : Princeton University Press
  • Release : 1972-10-21
  • ISBN : 9780691081113
  • Pages : 316 pages

Download or read book Lie Equations written by Antonio Kumpera and published by Princeton University Press. This book was released on 1972-10-21 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the authors redevelop the theory systematically using two different approaches. A general mechanism for the deformation of structures on manifolds was developed by Donald Spencer ten years ago. A new version of that theory, based on the differential calculus in the analytic spaces of Grothendieck, was recently given by B. Malgrange. The first approach adopts Malgrange's idea in defining jet sheaves and linear operators, although the brackets and the non-linear theory arc treated in an essentially different manner. The second approach is based on the theory of derivations, and its relationship to the first is clearly explained. The introduction describes examples of Lie equations and known integrability theorems, and gives applications of the theory to be developed in the following chapters and in the subsequent volume.

Book Elementary Lie Group Analysis and Ordinary Differential Equations

Download or read book Elementary Lie Group Analysis and Ordinary Differential Equations written by Nailʹ Khaĭrullovich Ibragimov and published by John Wiley & Sons. This book was released on 1999-05-04 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie group analysis, based on symmetry and invariance principles, is the only systematic method for solving nonlinear differential equations analytically. One of Lie's striking achievements was the discovery that the majority of classical devices for integration of special types of ordinary differential equations could be explained and deduced by his theory. Moreover, this theory provides a universal tool for tackling considerable numbers of differential equations when other means of integration fail. * This is the first modern text on ordinary differential equations where the basic integration methods are derived from Lie group theory * Includes a concise and self contained introduction to differential equations * Easy to follow and comprehensive introduction to Lie group analysis * The methods described in this book have many applications The author provides students and their teachers with a flexible text for undergraduate and postgraduate courses, spanning a variety of topics from the basic theory through to its many applications. The philosophy of Lie groups has become an essential part of the mathematical culture for anyone investigating mathematical models of physical, engineering and natural problems.

Book Stochastic Models  Information Theory  and Lie Groups  Volume 1

Download or read book Stochastic Models Information Theory and Lie Groups Volume 1 written by Gregory S. Chirikjian and published by Springer Science & Business Media. This book was released on 2009-09-02 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique two-volume set presents the subjects of stochastic processes, information theory, and Lie groups in a unified setting, thereby building bridges between fields that are rarely studied by the same people. Unlike the many excellent formal treatments available for each of these subjects individually, the emphasis in both of these volumes is on the use of stochastic, geometric, and group-theoretic concepts in the modeling of physical phenomena. Stochastic Models, Information Theory, and Lie Groups will be of interest to advanced undergraduate and graduate students, researchers, and practitioners working in applied mathematics, the physical sciences, and engineering. Extensive exercises and motivating examples make the work suitable as a textbook for use in courses that emphasize applied stochastic processes or differential geometry.

Book Lie Groups  Physics  and Geometry

Download or read book Lie Groups Physics and Geometry written by Robert Gilmore and published by Cambridge University Press. This book was released on 2008-01-17 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Book Infinite Dimensional Lie Algebras

Download or read book Infinite Dimensional Lie Algebras written by Victor G. Kac and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CRC Handbook of Lie Group Analysis of Differential Equations  Volume I

Download or read book CRC Handbook of Lie Group Analysis of Differential Equations Volume I written by Nail H. Ibragimov and published by CRC Press. This book was released on 2023-08-25 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.

Book Lie Groups

    Book Details:
  • Author : J.J. Duistermaat
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642569366
  • Pages : 352 pages

Download or read book Lie Groups written by J.J. Duistermaat and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.

Book Similarity Methods for Differential Equations

Download or read book Similarity Methods for Differential Equations written by G.W. Bluman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a systematic and practical account of methods of integration of ordinary and partial differential equations based on invariance under continuous (Lie) groups of trans formations. The goal of these methods is the expression of a solution in terms of quadrature in the case of ordinary differential equations of first order and a reduction in order for higher order equations. For partial differential equations at least a reduction in the number of independent variables is sought and in favorable cases a reduction to ordinary differential equations with special solutions or quadrature. In the last century, approximately one hundred years ago, Sophus Lie tried to construct a general integration theory, in the above sense, for ordinary differential equations. Following Abel's approach for algebraic equations he studied the invariance of ordinary differential equations under transformations. In particular, Lie introduced the study of continuous groups of transformations of ordinary differential equations, based on the infinitesimal properties of the group. In a sense the theory was completely successful. It was shown how for a first-order differential equation the knowledge of a group leads immediately to quadrature, and for a higher order equation (or system) to a reduction in order. In another sense this theory is somewhat disappointing in that for a first-order differ ential equation essentially no systematic way can be given for finding the groups or showing that they do not exist for a first-order differential equation.

Book Lie Algebras  Geometry  and Toda Type Systems

Download or read book Lie Algebras Geometry and Toda Type Systems written by Alexander Vitalievich Razumov and published by Cambridge University Press. This book was released on 1997-05-15 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes integrable Toda type systems and their Lie algebra and differential geometry background.

Book An Introduction to Lie Groups and Lie Algebras

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Book Naive Lie Theory

    Book Details:
  • Author : John Stillwell
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-15
  • ISBN : 038778215X
  • Pages : 230 pages

Download or read book Naive Lie Theory written by John Stillwell and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Book CRC Handbook of Lie Group Analysis of Differential Equations  Volume III

Download or read book CRC Handbook of Lie Group Analysis of Differential Equations Volume III written by Nail H. Ibragimov and published by CRC Press. This book was released on 2024-11-01 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.

Book Differential Equations with Discontinuous Righthand Sides

Download or read book Differential Equations with Discontinuous Righthand Sides written by A.F. Filippov and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Book Foundations of Differentiable Manifolds and Lie Groups

Download or read book Foundations of Differentiable Manifolds and Lie Groups written by Frank W. Warner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.