EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Vorlesungen Uber Die Theorie For Elliptischen Modulfunctionen

Download or read book Vorlesungen Uber Die Theorie For Elliptischen Modulfunctionen written by Dr Robert Fricke and published by Legare Street Press. This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fricke's groundbreaking study of the theory of elliptic modular functions is a must-read for anyone interested in the foundations of modern mathematics. With clear explanations and insightful examples, Fricke offers a comprehensive overview of this complex and fascinating subject. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Book Lectures on Selected Topics in Mathematical Physics

Download or read book Lectures on Selected Topics in Mathematical Physics written by William A. Schwalm and published by Morgan & Claypool Publishers. This book was released on 2015-12-31 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

Book Elliptic Functions

    Book Details:
  • Author : Komaravolu Chandrasekharan
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642522440
  • Pages : 199 pages

Download or read book Elliptic Functions written by Komaravolu Chandrasekharan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of a course of lectures on elliptic functions, given in German, at the Swiss Federal Institute of Technology, Zurich, during the summer semester of 1982. Its aim is to give some idea of the theory of elliptic functions, and of its close connexion with theta-functions and modular functions, and to show how it provides an analytic approach to the solution of some classical problems in the theory of numbers. It comprises eleven chapters. The first seven are function-theoretic, and the next four concern arithmetical applications. There are Notes at the end of every chapter, which contain references to the literature, comments on the text, and on the ramifications, old and new, of the problems dealt with, some of them extending into cognate fields. The treatment is self-contained, and makes no special demand on the reader's knowledge beyond the elements of complex analysis in one variable, and of group theory.

Book Lectures on the Theory of Elliptic Functions

Download or read book Lectures on the Theory of Elliptic Functions written by Harris Hancock and published by . This book was released on 1910 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lectures on Elliptic Partial Differential Equations

Download or read book Lectures on Elliptic Partial Differential Equations written by Luigi Ambrosio and published by Springer. This book was released on 2019-01-10 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book originates from the Elliptic PDE course given by the first author at the Scuola Normale Superiore in recent years. It covers the most classical aspects of the theory of Elliptic Partial Differential Equations and Calculus of Variations, including also more recent developments on partial regularity for systems and the theory of viscosity solutions.

Book An Introduction to the Regularity Theory for Elliptic Systems  Harmonic Maps and Minimal Graphs

Download or read book An Introduction to the Regularity Theory for Elliptic Systems Harmonic Maps and Minimal Graphs written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.

Book Higher Regulators  Algebraic  K  Theory  and Zeta Functions of Elliptic Curves

Download or read book Higher Regulators Algebraic K Theory and Zeta Functions of Elliptic Curves written by Spencer J. Bloch and published by American Mathematical Soc.. This book was released on 2011 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).

Book Arithmetic Theory of Elliptic Curves

Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer Science & Business Media. This book was released on 1999-10-19 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.

Book Elliptic Functions According to Eisenstein and Kronecker

Download or read book Elliptic Functions According to Eisenstein and Kronecker written by Andre Weil and published by Springer Science & Business Media. This book was released on 1999 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawn from the Foreword: (...) On the other hand, since much of the material in this volume seems suitable for inclusion in elementary courses, it may not be superfluous to point out that it is almost entirely self-contained. Even the basic facts about trigonometric functions are treated ab initio in Ch. II, according to Eisenstein's method. It would have been both logical and convenient to treat the gamma -function similarly in Ch. VII; for the sake of brevity, this has not been done, and a knowledge of some elementary properties of T(s) has been assumed. One further prerequisite in Part II is Dirichlet's theorem on Fourier series, together with the method of Poisson summation which is only a special case of that theorem; in the case under consideration (essentially no more than the transformation formula for the theta-function) this presupposes the calculation of some classical integrals. (...) As to the final chapter, it concerns applications to number theory (...).

Book LMSST  24 Lectures on Elliptic Curves

Download or read book LMSST 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.

Book Elliptic Functions and Elliptic Curves

Download or read book Elliptic Functions and Elliptic Curves written by Patrick Du Val and published by Cambridge University Press. This book was released on 1973-08-02 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive treatment of elliptic functions is linked by these notes to a study of their application to elliptic curves. This approach provides geometers with the opportunity to acquaint themselves with aspects of their subject virtually ignored by other texts. The exposition is clear and logically carries themes from earlier through to later topics. This enthusiastic work of scholarship is made complete with the inclusion of some interesting historical details and a very comprehensive bibliography.

Book Elliptic Curves  Modular Forms  and Their L functions

Download or read book Elliptic Curves Modular Forms and Their L functions written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2011 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.

Book Poncelet Porisms and Beyond

Download or read book Poncelet Porisms and Beyond written by Vladimir Dragović and published by Springer Science & Business Media. This book was released on 2011-05-02 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.

Book Introduction to the Arithmetic Theory of Automorphic Functions

Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Book Pi  A Source Book

    Book Details:
  • Author : J.L. Berggren
  • Publisher : Springer
  • Release : 2014-01-13
  • ISBN : 1475742177
  • Pages : 812 pages

Download or read book Pi A Source Book written by J.L. Berggren and published by Springer. This book was released on 2014-01-13 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book documents the history of pi from the dawn of mathematical time to the present. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet accessible, mathematics. The articles on pi collected herein fall into various classes. First and foremost there is a selection from the mathematical and computational literature of four millennia. There is also a variety of historical studies on the cultural significance of the number. Additionally, there is a selection of pieces that are anecdotal, fanciful, or simply amusing. For this new edition, the authors have updated the original material while adding new material of historical and cultural interest. There is a substantial exposition of the recent history of the computation of digits of pi, a discussion of the normality of the distribution of the digits, and new translations of works by Viete and Huygen.

Book Elliptic Functions and Applications

Download or read book Elliptic Functions and Applications written by Derek F. Lawden and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject matter of this book formed the substance of a mathematical se am which was worked by many of the great mathematicians of the last century. The mining metaphor is here very appropriate, for the analytical tools perfected by Cauchy permitted the mathematical argument to penetra te to unprecedented depths over a restricted region of its domain and enabled mathematicians like Abel, Jacobi, and Weierstrass to uncover a treasurehouse of results whose variety, aesthetic appeal, and capacity for arousing our astonishment have not since been equaled by research in any other area. But the circumstance that this theory can be applied to solve problems arising in many departments of science and engineering graces the topic with an additional aura and provides a powerful argument for including it in university courses for students who are expected to use mathematics as a tool for technological investigations in later life. Unfortunately, since the status of university staff is almost wholly determined by their effectiveness as research workers rather than as teachers, the content of undergraduate courses tends to reflect those academic research topics which are currently popular and bears little relationship to the future needs of students who are themselves not destined to become university teachers. Thus, having been comprehensively explored in the last century and being undoubtedly difficult .

Book Jacobi s Lectures on Dynamics

Download or read book Jacobi s Lectures on Dynamics written by A. Clebsch and published by Springer. This book was released on 2009-08-15 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The name of C. G. J. Jacobi is familiar to every student of mathematics, thanks to the Jacobion determinant, the Hamilton-Jacobi equations in dynamics, and the Jacobi identity for vector fields. Best known for his contributions to the theory of elliptic and abelian functions, Jacobi is also known for his innovative teaching methods and for running the first research seminar in pure mathematics. A record of his lectures on Dynamics given in 1842-43 at Konigsberg, edited by A. Clebsch, has been available in the original German. This is an English translation. It is not just a historical document; the modern reader can learn much about the subject directly from one of its great masters.