Download or read book Diophantine Approximation written by W.M. Schmidt and published by Springer. This book was released on 2009-02-05 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
Download or read book Diophantine Approximations and Diophantine Equations written by Wolfgang M. Schmidt and published by Springer. This book was released on 2006-12-08 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum
Download or read book Diophantine Approximations and Value Distribution Theory written by Paul Alan Vojta and published by Springer. This book was released on 2006-11-15 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lecture Notes on Diophantine Analysis written by Umberto Zannier and published by Springer. This book was released on 2015-05-05 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes originate from a course delivered at the Scuola Normale in Pisa in 2006. Generally speaking, the prerequisites do not go beyond basic mathematical material and are accessible to many undergraduates. The contents mainly concern diophantine problems on affine curves, in practice describing the integer solutions of equations in two variables. This case historically suggested some major ideas for more general problems. Starting with linear and quadratic equations, the important connections with Diophantine Approximation are presented and Thue's celebrated results are proved in full detail. In later chapters more modern issues on heights of algebraic points are dealt with, and applied to a sharp quantitative treatment of the unit equation. The book also contains several supplements, hinted exercises and an appendix on recent work on heights.
Download or read book Diophantine Approximation written by David Masser and published by Springer. This book was released on 2008-02-01 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing“best”rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell’s equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree ? 3, it has been clear how, in addition to its own speci?c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V.
Download or read book Diophantine Approximations written by Ivan Niven and published by Courier Corporation. This book was released on 2013-01-23 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained treatment covers approximation of irrationals by rationals, product of linear forms, multiples of an irrational number, approximation of complex numbers, and product of complex linear forms. 1963 edition.
Download or read book Diophantine Approximation and Abelian Varieties written by Bas Edixhoven and published by Springer Science & Business Media. This book was released on 1993 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.
Download or read book Diophantine Analysis written by Jorn Steuding and published by CRC Press. This book was released on 2005-05-19 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: While its roots reach back to the third century, diophantine analysis continues to be an extremely active and powerful area of number theory. Many diophantine problems have simple formulations, they can be extremely difficult to attack, and many open problems and conjectures remain. Diophantine Analysis examines the theory of diophantine ap
Download or read book Classical Diophantine Equations written by Vladimir G. Sprindzuk and published by Springer. This book was released on 2006-11-15 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.
Download or read book Integral Points on Algebraic Varieties written by Pietro Corvaja and published by Springer. This book was released on 2016-11-23 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces.
Download or read book Lectures on Diophantine Approximations written by Kurt Mahler and published by . This book was released on 1961 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Diophantine Equations Over Function Fields written by R. C. Mason and published by Cambridge University Press. This book was released on 1984-04-26 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained account of a new approach to the subject.
Download or read book Advanced Topics in the Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.
Download or read book Unit Equations in Diophantine Number Theory written by Jan-Hendrik Evertse and published by Cambridge University Press. This book was released on 2015-12-30 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, graduate-level treatment of unit equations and their various applications.
Download or read book Analytic Number Theory written by Yoichi Motohashi and published by Cambridge University Press. This book was released on 1997-10-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative, up-to-date review of analytic number theory containing outstanding contributions from leading international figures.
Download or read book Arakelov Geometry and Diophantine Applications written by Emmanuel Peyre and published by Springer Nature. This book was released on 2021-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.
Download or read book Geometric and Analytic Number Theory written by Edmund Hlawka and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.