EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Least Cost Optimization of Complex Steel Structures

Download or read book Least Cost Optimization of Complex Steel Structures written by O. F. Hughes and published by . This book was released on 1975 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimum Design of Steel Structures

Download or read book Optimum Design of Steel Structures written by József Farkas and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads. Chapter 8 gives a cost comparison of cylindrical and conical shells. The book contains a large collection of literatures and a subject list and a name index.

Book Cost Optimization of Structures

Download or read book Cost Optimization of Structures written by Hojjat Adeli and published by John Wiley & Sons. This book was released on 2006-11-02 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the weight of a structure constitutes a significant part of the cost, a minimum weight design is not necessarily the minimum cost design. Little attention in structural optimization has been paid to the cost optimization problem, particularly of realistic three-dimensional structures. Cost optimization is becoming a priority in all civil engineering projects, and the concept of Life-Cycle Costing is penetrating design, manufacturing and construction organizations. In this groundbreaking book the authors present novel computational models for cost optimization of large scale, realistic structures, subjected to the actual constraints of commonly used design codes. As the first book on the subject this book: Contains detailed step-by-step algorithms Focuses on novel computing techniques such as genetic algorithms, fuzzy logic, and parallel computing Covers both Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD) codes Includes realistic design examples covering large-scale, high-rise building structures Presents computational models that enable substantial cost savings in the design of structures Fully automated structural design and cost optimization is where large-scale design technology is heading, thus Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing will be of great interest to civil and structural engineers, mechanical engineers, structural design software developers, and architectural engineers involved in the design of structures and life-cycle cost optimisation. It is also a pioneering text for graduate students and researchers working in building design and structural optimization.

Book An Artificial Intelligence Framework for Multi disciplinary Design Optimization of Steel Buildings

Download or read book An Artificial Intelligence Framework for Multi disciplinary Design Optimization of Steel Buildings written by Filippo Ranalli and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation describes the development of a new AI-driven multi-disciplinary structural design optimization (MDSDO) software framework to automate the design of the structural sub-systems of typical steel buildings, comprised of the composite floor system, the lateral system, and their respective connections, adopting a minimum-cost objective function, and meeting the relevant strength, drift, vibration, constructability, and ductility constraints per U.S. building code, design manuals, and industry standards. The cost objective function accounts for material, fabrication, and erection rates, and is evaluated through estimation models assembled with guidance provided by general contractors and steel fabricators in the U.S. who agreed to contribute up-to-date cost data, which is typically difficult to access for researchers. The core challenges of developing such a design tool revolve around the size of the optimization problem in terms of number of constraints, objective complexity, and design domain, as well as the need for software modularity to target specific structural sub-systems, while striving for the ease of adoption of this technology for new design in industry. Computational scalability to full-sized structures is also a key requirement to address, together with designing a way to incorporate accurate project-specific cost data in order to find minimum-cost solutions. In the proposed framework, the approach adopted to solve the optimization of steel buildings is to decompose the full design problem into three decoupled software modules in Python which are then solved individually with divide and conquer algorithmic solutions, coordinated through a multi-disciplinary architecture. The research approach focuses on the separate development and testing of each of the modules of the architecture on smaller benchmark sub-systems, progressively building software infrastructure to connect the stand-alone optimizations so as to run them collaboratively, with a focus on full-building design optimality, algorithmic run-time, and scalability. Both classic and more recent Artificial Intelligence methods play a key role across the optimization modules on the choice and design of the algorithms, as well as on the software engineering aspects for augmented computational efficiency. The optimization of each module is preceded by a series of automated pre-processing steps to parse and store the geometric, structural, and loading features of the Building Information Model (BIM) or Finite Element Analytical (FEA) model. Subsequently, the framework modules, one for each of the key structural sub-systems, may be run sequentially to automate the full design end-to-end, or as stand-alone logic to optimize select sub-systems in the structure. The first module performs the composite floor system design, in which each girder, filler beam, and column subjected to construction and ultimate gravity loads is sized to meet a series of constraints. Through dynamic programming, the algorithm exhaustively explores all feasible solutions in an engineer-specified discrete domain of slab and concrete properties, wide flange sections, degree of composite action, number of studs, camber, and shoring, and ultimately selects the most economical option. The second logic component automates the design optimization of the lateral frame system to withstand the seismic and wind load demands per building code regulations, using an innovative energy-based algorithm to envelope the critical load combinations and determine the cost-optimal sizes. Lastly, the third stand-alone software module of MDSDO consists of a connection optimization engine, whose functionality is to size and detail each individual gravity and lateral connection based on the load demands using non-linear solvers, yielding a design with better economy than the traditional schedule-based approach by which each connection is conservatively sized based solely on the geometry of its connecting elements. Validation of the optimization framework is illustrated by running each of the sub-system optimization modules of the multi-disciplinary architecture sequentially on an existing 4-story steel building in California subjected to gravity, wind, and seismic loading, with fine-tuned cost parameters and an analytical model assembled with guidance from the general contractor and structural engineer on the project. When compared to the original design, the results of the MDSDO show total steel cost savings of approximately 10%, with individual sub-system savings between 5 and 55%, amongst which the gravity connections show the largest potential for savings, and with a design run-time in the order of a few hours versus several weeks. The most cost-impacting structural feature differences between the original design and the optimization output are the reductions in shear studs, shear bolts, stiffener plates, shear plate dimensions, weld volume, and moment frame weight. A parametric study is furthermore conducted to understand to what extent varying slab and deck heights, composite moment frame girder action, and concrete type from the original design choices might affect the total cost. The most important theoretical improvement of the MDSDO framework over existing structural optimization methods in the literature is the capability to scale to full-size steel buildings, accounting for the full set of relevant strength, stiffness, vibration, ductility, and constructability prescriptions. These constraints are interpreted from U.S. codes and manuals, re-formulated with compact mathematical notation, and subsequently expressed in computer code. Scalability is achieved by reducing the design domain to realistic discrete values, and by designing new efficient algorithms for each of the gravity, lateral, and connection sub-systems. Moreover, the MDSDO relies on a cost objective function which is more complex and adaptable than the classic weight minimization approach, as it accounts for material, labor, and equipment rates sampled from industry data, which are used to estimate each of the detailing components of the structural sub-system designs. The modularity, interpretability, and ease of use of the MDSDO favors its applicability to new design of commercial, medical, and residential steel buildings with minimal additional effort from the engineer's part. The MDSDO is expected to impact industry by providing total installed cost reductions on steel frames ranging between 9% and 20%, the lower bound of which is deduced from the case study results of this dissertation, while the upper bound is estimated for projects whose budget is on the higher end of the spectrum. Moreover, the MDSDO is able to generate a feasible and cost-optimal design of a new building in the order of a few hours, thus allowing the engineer to save weeks of design time, resulting in a rather competitive edge, and when appropriate, the added ability to pursue the more advanced and time-consuming aspects of Performance-Based Engineering (PBE). The MDSDO also provides an additional layer of safety by automating the design checks, while also helping prevent issues with constructability by enforcing a series of constraints on relative member sizes. The author predicts that the adoption of the MDSDO in elastic design in industry may provide benefit to the owner, structural engineer, and general contractor, while potentially reducing the environmental impact of construction by identifying lighter solutions with reduced construction time.

Book Fuzzy Discrete Multicriteria Cost Optimization of Steel Structures Using Genetic Algorithm

Download or read book Fuzzy Discrete Multicriteria Cost Optimization of Steel Structures Using Genetic Algorithm written by Kamal Chandra Sarma and published by . This book was released on 2001 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Construction Cost Optimization of Offshore Steel Structures

Download or read book Construction Cost Optimization of Offshore Steel Structures written by D. Baird and published by . This book was released on 1982 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Journal of the Institution of Engineers  Australia

Download or read book The Journal of the Institution of Engineers Australia written by Institution of Engineers, Australia and published by . This book was released on 1974 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CIGOS 2019  Innovation for Sustainable Infrastructure

Download or read book CIGOS 2019 Innovation for Sustainable Infrastructure written by Cuong Ha-Minh and published by Springer Nature. This book was released on 2019-10-10 with total page 1264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected articles from the 5th International Conference on Geotechnics, Civil Engineering Works and Structures, held in Ha Noi, focusing on the theme “Innovation for Sustainable Infrastructure”, aiming to not only raise awareness of the vital importance of sustainability in infrastructure development but to also highlight the essential roles of innovation and technology in planning and building sustainable infrastructure. It provides an international platform for researchers, practitioners, policymakers and entrepreneurs to present their recent advances and to exchange knowledge and experience on various topics related to the theme of “Innovation for Sustainable Infrastructure”.

Book Steel Structures

Download or read book Steel Structures written by Hassan Al Nageim and published by CRC Press. This book was released on 2016-11-03 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of this popular steel structures book contains references to both Eurocodes and British Standards. All the material has been updated where necessary, and new and revised worked examples are included. Sections on the meaning, the purpose and limits of structural design, sustainable steel building and energy saving have been updated. The initial chapters cover the essentials of structural engineering and structural steel design. The remainder of the book is dedicated to a detail examination of the analysis and design of selected types of structures, presenting complex designs in an understandable and user-friendly way. These structures include a range of single and multi-storey buildings, floor systems and wide-span buildings. Each design example is illustrated with applications based on current Eurocodes or British Standard design data, thus assisting the reader to share in the environment of the design process that normally takes place in practical offices and develop real design skills. Two new chapters on the design of cased steel columns and plate girders with and without rigid end posts to EC4 & EC3 are included too. References have been fully updated and include useful website addresses. Emphasis is placed on practical design with a view to helping undergraduate students and newly qualified engineers bridge the gap between academic study and work in the design office. Practising engineers who need a refresher course on up-to-dates methods of design and analysis to EC3 and EC4 will also find the book useful, and numerous worked examples are included.

Book Conference Papers  Derived loads

Download or read book Conference Papers Derived loads written by and published by . This book was released on 1982 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis and Optimum Design of Metal Structures

Download or read book Analysis and Optimum Design of Metal Structures written by J Farkas and published by CRC Press. This book was released on 2020-12-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailing a number of structural analysis problems such as residual welding stresses and distortions and behaviour of thin-walled rods loaded in bending, this text also explores mathematical function minimization methods, expert systems and optimum design of welded box beams.

Book Rehabilitation of Metallic Structural Systems Using Fiber Reinforced Polymer  FRP  Composites

Download or read book Rehabilitation of Metallic Structural Systems Using Fiber Reinforced Polymer FRP Composites written by Vistasp M. Karbhari and published by Elsevier. This book was released on 2024-11-01 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rehabilitation of Metallic Structural Systems Using Fiber-Reinforced Polymer (FRP) Composites, Second Edition provides comprehensive knowledge on the application of FRPs in various types of metallic field structures. Part I provides an overview of the various types of materials and systems and discusses the durability of bonds. Part II focuses on materials-level considerations, such as corrosion and mechanical behavior, putty effects on the effectiveness of pipeline systems, laser joining and the use of carbon and basalt FRP for underwater repair. Building on Part II, the final three sections focus on applications of FRP composites to steel components and various infrastructure systems. This book will be a standard reference for civil engineers, designers, materials scientists, and other professionals who are involved in the rehabilitation of metallic structures using fiber reinforced polymer composites. Contains eighteen new chapters covering materials-level aspects and applications Presents materials developments for tailored bonds, durability, and bond behavior Includes methods of analysis, testing, and implementation across a broad range of sectors Covers design aspects, guidelines, and codes Discusses economic aspects and future prospects

Book Nature Inspired Metaheuristic Algorithms for Engineering Optimization Applications

Download or read book Nature Inspired Metaheuristic Algorithms for Engineering Optimization Applications written by Serdar Carbas and published by Springer Nature. This book was released on 2021-03-31 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book engages in an ongoing topic, such as the implementation of nature-inspired metaheuristic algorithms, with a main concentration on optimization problems in different fields of engineering optimization applications. The chapters of the book provide concise overviews of various nature-inspired metaheuristic algorithms, defining their profits in obtaining the optimal solutions of tiresome engineering design problems that cannot be efficiently resolved via conventional mathematical-based techniques. Thus, the chapters report on advanced studies on the applications of not only the traditional, but also the contemporary certain nature-inspired metaheuristic algorithms to specific engineering optimization problems with single and multi-objectives. Harmony search, artificial bee colony, teaching learning-based optimization, electrostatic discharge, grasshopper, backtracking search, and interactive search are just some of the methods exhibited and consulted step by step in application contexts. The book is a perfect guide for graduate students, researchers, academicians, and professionals willing to use metaheuristic algorithms in engineering optimization applications.

Book Discrete Problems in Nature Inspired Algorithms

Download or read book Discrete Problems in Nature Inspired Algorithms written by Anupam Prof. Shukla and published by CRC Press. This book was released on 2017-12-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes introduction of several algorithms which are exclusively for graph based problems, namely combinatorial optimization problems, path formation problems, etc. Each chapter includes the introduction of the basic traditional nature inspired algorithm and discussion of the modified version for discrete algorithms including problems pertaining to discussed algorithms.

Book Steel Structures

    Book Details:
  • Author : T.J. MacGinley
  • Publisher : CRC Press
  • Release : 2002-12-24
  • ISBN : 1482271168
  • Pages : 198 pages

Download or read book Steel Structures written by T.J. MacGinley and published by CRC Press. This book was released on 2002-12-24 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this well-known book provides a series of practical design studies of a range of steel structures. It is extensively revised and contains numerous worked examples, including comparative designs for many structures.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: