EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer

Download or read book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer written by Vijay K. Garg and published by . This book was released on 1995 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

Book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects

Download or read book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects written by Laurene D. Dobrowolski and published by . This book was released on 2009 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized "metal" temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface.

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

Download or read book Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-27 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model. Han, J. C. and Ekkad, S. V. and Du, H. and Teng, S. Glenn Research Center NAG3-1656; RTOP 714-01-4A

Book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

Download or read book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-23 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils. Hylton, L. D. and Nirmalan, V. and Sultanian, B. K. and Kaufman, R. M. Unspecified Center EQUIPMENT SPECIFICATIONS; FILM COOLING; HEAT TRANSFER; LEADING EDGES; STRUCTURAL DESIGN; VANES; AIRCRAFT ENGINES; CASCADE FLOW; DATA PROCESSING; GAS TURBINES; HIGH TEMPERATURE; PARAMETERIZATION; TWO DIMENSIONAL FLOW...

Book Gas Turbine Heat Transfer and Cooling Technology  Second Edition

Download or read book Gas Turbine Heat Transfer and Cooling Technology Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Investigations of Flow and Film Cooling on Turbine Blade Edge Regions

Download or read book Investigations of Flow and Film Cooling on Turbine Blade Edge Regions written by Huitao Yang and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The inlet temperature of modern gas turbine engines has been increased to achieve higher thermal efficiency and increased output. The blade edge regions, including the blade tip, the leading edge, and the platform, are exposed to the most extreme heat loads, and therefore, must be adequately cooled to maintain safety. For the blade tip, there is tip leakage flow due to the pressure gradient across the tip. This leakage flow not only reduces the blade aerodynamic performance, but also yields a high heat load due to the thin boundary layer and high speed. Various tip configurations, such as plane tip, double side squealer tip, and single suction side squealer tip, have been studied to find which one is the best configuration to reduce the tip leakage flow and the heat load. In addition to the flow and heat transfer on the blade tip, film cooling with various arrangements, including camber line, upstream, and two row configurations, have been studied. Besides these cases of low inlet/outlet pressure ratio, low temperature, non-rotating, the high inlet/outlet pressure ratio, high temperature, and rotating cases have been investigated, since they are closer to real turbine working conditions. The leading edge of the rotor blade experiences high heat transfer because of the stagnation flow. Film cooling on the rotor leading edge in a 11/2 turbine stage has been numerically studied for the designand off-design conditions. Simulations find that the increasing rotating speed shifts the stagnation line from the pressure side, to the leading edge and the suction side, while film cooling protection moves in the reverse direction with decreasing cooling effectiveness. Film cooling brings a high unsteady intensity of the heat transfer coefficient, especially on the suction side. The unsteady intensity of film cooling effectiveness is higher than that of the heat transfer coefficient. The film cooling on the rotor platform has gained significant attention due to the usage of low-aspect ratio and low-solidity turbine designs. Film cooling and its heat transfer are strongly influenced by the secondary flow of the end-wall and the stator-rotor interaction. Numerical predictions have been performed for the film cooling on the rotating platform of a whole turbine stage. The design conditions yield a high cooling effectiveness and decrease the cooling effectiveness unsteady intensity, while the high rpm condition dramatically reduces the film cooling effectiveness. High purge flow rates provide a better cooling protection. In addition, the impact of the turbine work process on film cooling effectiveness and heat transfer coefficient has been investigated. The overall cooling effectiveness shows a higher value than the adiabatic effectiveness does.

Book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1997 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Book Highly resolved distribution of heat transfer for turbine leading edge film cooling including reynolds number and blowing rate effects  ASME 98 GT 64

Download or read book Highly resolved distribution of heat transfer for turbine leading edge film cooling including reynolds number and blowing rate effects ASME 98 GT 64 written by K. Jung and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, June 2 - June 5, 1998.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book The Influence of Cooling Air Injection on Flow Development and Heat Transfer in a Rotating Leading Edge Coolant Duct of a Film Cooled Turbine Blade

Download or read book The Influence of Cooling Air Injection on Flow Development and Heat Transfer in a Rotating Leading Edge Coolant Duct of a Film Cooled Turbine Blade written by and published by . This book was released on 2003 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing turbine inlet temperature, the cooling of gas turbine components exposed to the hot gas flow will be of great importance. The improvement of the efficiency demands higher performance from the blade cooling systems with minimized coolant flow rates to cope with the increase in heat load as well as to meet the obligatory safety requirements. This calls for very accurate knowledge of the gas and coolant side flow and heat transfer, which both affect the blade temperature field, in order to obtain an efficient cooling design. This paper provides information about rotational effects on fluid motion and heat transfer within a rotating coolant duct of circular cross section with bleeding of cooling air through a row of film cooling holes for the purpose of film cooling of the hot gas side of the blade. Experimental data were obtained from a model mounted to the rotating duct facility at DLR. Flow development were measured by a non-intrusive optical Laser velocimeter. Wall temperature distributions around the duct wall and the generated heat were measured to provide data for local heat transfer analysis. The direction of bleeding is varied against the direction of rotation to study its effect on the development of secondary vortex structures which are generally caused within the flow by the rotational forces. Depending on the direction of bleeding, secondary vortex motion as well as heat transfer variation around the duct circumference are enhanced with pressure side ejection or weakened with suction side ejection.

Book CFD Predictions of Heat Transfer Coefficient Augmentation on a Simulated Film Cooled Turbine Blade Leading Edge

Download or read book CFD Predictions of Heat Transfer Coefficient Augmentation on a Simulated Film Cooled Turbine Blade Leading Edge written by Gwennaël Beirnaert-Chartrel and published by . This book was released on 2011 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations were run to study heat transfer coefficient augmentation with film cooling for a simulated gas turbine blade leading edge. The realizable k-[epsilon] turbulence model (RKE) and Shear Stress Transport k-[omega] turbulence model (SST) were used for the computational simulations. RKE computations completed at a unity density ratio were confirmed to be consistent with experimental measurements conducted by Yuki et al.(1998) and Johnston et al. (1999) whereas SST computations exhibited significant discrepancies. Moreover the effect of the density ratio on heat transfer coefficient augmentation was studied because experimental measurements of heat transfer coefficient augmentation with film cooling are generally constrained to unity density ratio tests. It was shown that heat transfer coefficient augmentation can be simulated using unity density ratio jets, but only when scaled with the momentum flux ratio of the coolant jets.

Book Handbook Of Flow Visualization

Download or read book Handbook Of Flow Visualization written by Wen Jei Yang and published by Routledge. This book was released on 2018-12-19 with total page 1477 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions from some of the world's leading experts, the second edition of this classic reference compiles all major techniques of flow visualization and demonstrates their applications in all fields of science and technology. A new chapter has been added that covers flow visualization applications in large wide tunnels for airplane and automobile testing. Several important examples of applications are included. A second new chapter details the use of infrared (IR) cameras for detecting and observing the boundary layer transition in industrial wind tunnels and flight testing of commercial transport airplanes. A final new chapter has been added on multiphase flow and pulsed-light velocimetry.

Book Film Cooling and Turbine Blade Heat Transfer

Download or read book Film Cooling and Turbine Blade Heat Transfer written by and published by . This book was released on 1982 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: