EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Large Eddy Simulations of Turbulent Flows on Graphics Processing Units  Application to Film cooling Flows

Download or read book Large Eddy Simulations of Turbulent Flows on Graphics Processing Units Application to Film cooling Flows written by Aaron F. Shinn and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent flows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent flows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of this problem as well as techniques to improve it is important. Fundamentally, a film-cooling configuration is an inclined cooling jet in a hot cross-flow. A known problem in the film-cooling method is jet lift-off, where the jet of coolant moves away from the surface to be cooled due to mutual vortex induction by the counter-rotating vortex pair embedded in the jet, resulting in decreased cooling at the surface. To counteract this, a micro-ramp vortex generator was added downstream of the film-cooling jet, which generated near-wall counter-rotating vortices of opposite sense to the vortex pair in the jet. It was found that the micro-ramp vortices created a downwash effect toward the wall, which helped entrain coolant from the jet and transport it to the wall, resulting in better cooling. Results are reported using two film-cooling configurations, where the primary difference is the way the jet exit boundary conditions are prescribed. In the first configuration, the jet is prescribed using a precursor simulation and in the second the jet is modeled using a plenum/pipe configuration. The latter configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results were meant to supplement those experiments.

Book Direct and Large Eddy Simulation XI

Download or read book Direct and Large Eddy Simulation XI written by Maria Vittoria Salvetti and published by Springer. This book was released on 2019-02-02 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.

Book Application of Large Eddy Simulation to Cooling and Flow Problems in Aeropropulsion Systems

Download or read book Application of Large Eddy Simulation to Cooling and Flow Problems in Aeropropulsion Systems written by Richard H. Pletcher and published by . This book was released on 2004 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this research was to develop and apply large eddy simulation (LES) technology to some urgent flow and heat transfer problems in propulsion systems and to contribute to the physical understanding of such flows. The work was motivated by the observation that the design goals of high specific power and thrust and low specific fuel consumption have been reached, in part, by an increase in turbine inlet temperature and future improvements in engine efficiency will place even greater demands on blade cooling procedures. However, current design codes are somewhat limited in accuracy due to uncertainty associated with modeling for turbulent flow. The research was concerned with both the film cooling of external blade surfaces and the complex flows in internal cooling passages. Studies have been completed of the effects of rotation on the heat transfer and flow in smooth and ribbed channels and in a duct of square cross-section. A scheme was developed for including the effects of freestream turbulence on boundary layer development. Preliminary LES results have been obtained for a single hole film cooling configuration.

Book Mathematics of Large Eddy Simulation of Turbulent Flows

Download or read book Mathematics of Large Eddy Simulation of Turbulent Flows written by Luigi Carlo Berselli and published by Springer Science & Business Media. This book was released on 2006 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field

Book Large Eddy Simulations of Turbulence

Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Book Large Eddy Simulation for Compressible Flows

Download or read book Large Eddy Simulation for Compressible Flows written by Eric Garnier and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.

Book Large Eddy Simulation for Incompressible Flows

Download or read book Large Eddy Simulation for Incompressible Flows written by P. Sagaut and published by Springer Science & Business Media. This book was released on 2006 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Book Direct and Large Eddy Simulation I

Download or read book Direct and Large Eddy Simulation I written by Peter R. Voke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.

Book Application of Large Eddy Simulation to Cooling and Flow Problems in Aeropropulsion Systems

Download or read book Application of Large Eddy Simulation to Cooling and Flow Problems in Aeropropulsion Systems written by and published by . This book was released on 2004 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this research was to develop and apply large eddy simulation (LES) technology to some urgent flow and heat transfer problems in propulsion systems and to contribute to the physical understanding of such flows. The work was motivated by the observation that the design goals of high specific power and thrust and low specific fuel consumption have been reached, in part, by an increase in turbine inlet temperature and future improvements in engine efficiency will place even greater demands on blade cooling procedures. However, current design codes are somewhat limited in accuracy due to uncertainty associated with modeling for turbulent flow. The research was concerned with both the film cooling of external blade surfaces and the complex flows in internal cooling passages. Studies have been completed of the effects of rotation on the heat transfer and flow in smooth and ribbed channels and in a duct of square cross-section. A scheme was developed for including the effects of freestream turbulence on boundary layer development. Preliminary LES results have been obtained for a single hole film cooling configuration.

Book Direct and Large Eddy Simulation X

Download or read book Direct and Large Eddy Simulation X written by Dimokratis G.E. Grigoriadis and published by Springer. This book was released on 2017-10-06 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.

Book CFD Modeling and Simulation in Materials Processing 2016

Download or read book CFD Modeling and Simulation in Materials Processing 2016 written by Laurentiu Nastac and published by Springer. This book was released on 2017-08-31 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Eddy Simulations and Turbulence Modeling for Film Cooling

Download or read book Large Eddy Simulations and Turbulence Modeling for Film Cooling written by Sumanta Acharya and published by . This book was released on 1999 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Eddy Simulation for Incompressible Flows

Download or read book Large Eddy Simulation for Incompressible Flows written by Pierre Sagaut and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Book Large Eddy Simulations and Turbulence Modeling for Film Cooling

Download or read book Large Eddy Simulations and Turbulence Modeling for Film Cooling written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-13 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes. Acharya, Sumanta Glenn Research Center NAG3-1641; RTOP 538-12-10

Book Direct and Large Eddy Simulation XIII

Download or read book Direct and Large Eddy Simulation XIII written by Cristian Marchioli and published by Springer Nature. This book was released on 2023-11-15 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the diverse and cutting-edge research presented at the 13th ERCOFTAC Workshop on Direct and Large Eddy Simulation. The first section of the book focuses on Aerodynamics/Aeroacoustics, comprising eight papers that delve into the intricate relationship between fluid flow and aerodynamic performance. The second section explores the dynamics of Bluff/Moving Bodies through four insightful papers. Bubbly Flows, the subject of the third section, is examined through four papers. Moving on, the fourth section is dedicated to Combustion and Reactive Flows, presenting two papers that focus on the complex dynamics of combustion processes and the interactions between fluids and reactive species. Convection and Heat/Mass Transfer are the central themes of the fifth section, which includes three papers. These contributions explore the fundamental aspects of heat and mass transfer in fluid flows, addressing topics such as convective heat transfer, natural convection, and mass transport phenomena. The sixth section covers Data Assimilation and Uncertainty Quantification, featuring two papers that highlight the importance of incorporating data into fluid dynamic models and quantifying uncertainties associated with these models. The subsequent sections encompass a wide range of topics, including Environmental and Industrial Applications, Flow Separation, LES Fundamentals and Modelling, Multiphase Flows, and Numerics and Methodology. These sections collectively present a total of 23 papers that explore different facets of fluid dynamics, contributing to the advancement of the field and its practical applications.

Book Turbulence Modelling Approaches

Download or read book Turbulence Modelling Approaches written by Konstantin Volkov and published by BoD – Books on Demand. This book was released on 2017-07-26 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.