EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Large Eddy Simulation of Turbulent Multi Regime Combustion  Potentials and Limitations of Flamelet Based Chemistry Modeling

Download or read book Large Eddy Simulation of Turbulent Multi Regime Combustion Potentials and Limitations of Flamelet Based Chemistry Modeling written by Sebastian Popp and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Turbulent Combustion

    Book Details:
  • Author : Norbert Peters
  • Publisher : Cambridge University Press
  • Release : 2000-08-15
  • ISBN : 1139428063
  • Pages : 322 pages

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Book Large Eddy Simulations of Premixed Turbulent Flame Dynamics

Download or read book Large Eddy Simulations of Premixed Turbulent Flame Dynamics written by Gaurav Kewlani and published by . This book was released on 2014 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: High efficiency, low emissions and stable operation over a wide range of conditions are some of the key requirements of modem-day combustors. To achieve these objectives, lean premixed flames are generally preferred as they achieve efficient and clean combustion. A drawback of lean premixed combustion, however, is that the flames are more prone to dynamics. The unsteady release of sensible heat and flow dilatation in combustion processes create pressure fluctuations which, particularly in premixed flames, can couple with the acoustics of the combustion system. This acoustic coupling creates a feedback loop with the heat release that can lead to severe thermoacoustic instabilities that can damage the combustor. Understanding these dynamics, predicting their onset and proposing passive and active control strategies are critical to large-scale implementation. For the numerical study of such systems, large eddy simulation (LES) techniques with appropriate combustion models and reaction mechanisms are highly appropriate. These approaches balance the computational complexity and predictive accuracy. This work, therefore, aims to explore the applicability of these methods to the study of premixed wake stabilized flames. Specifically, finite rate chemistry LES models that can effectively capture the interaction between different turbulent scales and the combustion fronts have been implemented, and applied for the analysis of premixed turbulent flame dynamics in laboratory-scale combustor configurations. Firstly, the artificial flame thickening approach, along with an appropriate reduced chemistry mechanism, is utilized for modeling turbulence-combustion interactions at small scales. A novel dynamic formulation is proposed that explicitly incorporates the influence of strain on flame wrinkling by solving a transport equation for the latter rather than using local-equilibrium-based algebraic models. Additionally, a multiple-step combustion chemistry mechanism is used for the simulations. Secondly, the presumed-PDF approach, coupled with the flamelet generated manifold (FGM) technique, is also implemented for modeling turbulence-combustion interactions. The proposed formulation explicitly incorporates the influence of strain via the scalar dissipation rate and can result in more accurate predictions especially for highly unsteady flame configurations. Specifically, the dissipation rate is incorporated as an additional coordinate to presume the PDF and strained flamelets are utilized to generate the chemistry databases. These LES solvers have been developed and applied for the analysis of reacting flows in several combustor configurations, i.e. triangular bluff body in a rectangular channel, backward facing step configuration, axi-symmetric bluff body in cylindrical chamber, and cylindrical sudden expansion with swirl, and their performance has been be validated against experimental observations. Subsequently, the impact of the equivalence ratio variation on flame-flow dynamics is studied for the swirl configuration using the experimental PIV data as well as the numerical LES code, following which dynamic mode decomposition of the flow field is performed. It is observed that increasing the equivalence ratio can appreciably influence the dominant flow features in the wake region, including the size and shape of the recirculation zone(s), as well as the flame dynamics. Specifically, varying the heat loading results in altering the dominant flame stabilization mechanism, thereby causing transitions across distinct- flame configurations, while also modifying the inner recirculation zone topology significantly. Additionally, the LES framework has also been applied to gain an insight into the combustion dynamics phenomena for the backward-facing step configuration. Apart from evaluating the influence of equivalence ratio on the combustion process for stable flames, the flame-flow interactions in acoustically forced scenarios are also analyzed using LES and dynamic mode decomposition (DMD). Specifically, numerical simulations are performed corresponding to a selfexcited combustion instability configuration as observed in the experiments, and it is observed that LES is able to suitably capture the flame dynamics. These insights highlight the effect of heat release variation on flame-flow interactions in wall-confined combustor configurations, which can significantly impact combustion stability in acoustically-coupled systems. The fidelity of the solvers in predicting the system response to variation in heat loading and to acoustic forcing suggests that the LES framework can be suitably applied for the analysis of flame dynamics as well as to understand the fundamental mechanisms responsible for combustion instability. KEY WORDS - large eddy simulation, LES, wake stabilized flame, turbulent premixed combustion, combustion modeling, artificially thickened flame model, triangular bluff body, backward facing step combustor, presumed-PDF model, flamelet generated manifold, axi-symmetric bluff body, cylindrical swirl combustor, particle image velocimetry, dynamic mode decomposition, combustion instability, forced response.

Book A Multi dimensional Flamelet Model for Ignition in Multi feed Combustion Systems

Download or read book A Multi dimensional Flamelet Model for Ignition in Multi feed Combustion Systems written by Eric Michael Doran and published by Stanford University. This book was released on 2011 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work develops a computational framework for modeling turbulent combustion in multi-feed systems that can be applied to internal combustion engines with multiple injections. In the first part of this work, the laminar flamelet equations are extended to two dimensions to enable the representation of a three-feed system that can be characterized by two mixture fractions. A coupling between the resulting equations and the turbulent flow field that enables the use of this method in unsteady simulations is then introduced. Models are developed to describe the scalar dissipation rates of each mixture fraction, which are the parameters that determine the influence of turbulent mixing on the flame structure. Furthermore, a new understanding of the function of the joint dissipation rate of both mixture fractions is discussed. Next, the extended flamelet equations are validated using Direct Numerical Simulations (DNS) of multi-stream ignition that employ detailed finite-rate chemistry. The results demonstrate that the ignition of the overall mixture is influenced by heat and mass transfer between the fuel streams and that this interaction is manifested as a front propagation in two-dimensional mixture fraction space. The flamelet model is shown to capture this behavior well and is therefore able to accurately describe the ignition process of each mixture. To provide closure between the flamelet chemistry and the turbulent flow field, information about the joint statistics of the two mixture fractions is required. An investigation of the joint probability density function (PDF) was carried out using DNS of two scalars mixing in stationary isotropic turbulence. It was found that available models for the joint PDF lack the ability to conserve all second-order moments necessary for an adequate description of the mixing field. A new five parameter bivariate beta distribution was therefore developed and shown to describe the joint PDF more accurately throughout the entire mixing time and for a wide range of initial conditions. Finally, the proposed model framework is applied in the simulation of a split-injection diesel engine and compared with experimental results. A range of operating points and different injection strategies are investigated. Comparisons with the experimental pressure traces show that the model is able to predict the ignition delay of each injection and the overall combustion process with good accuracy. These results indicate that the model is applicable to the range of regimes found in diesel combustion.

Book Chemical Modeling for Large Eddy Simulation of Turbulent Combustion

Download or read book Chemical Modeling for Large Eddy Simulation of Turbulent Combustion written by and published by . This book was released on 2009 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present project the focus was on developing advanced combustion models for large-eddy simulations (LES) and to develop automatic chemistry reduction techniques and reduced chemical mechanisms for JP-8 surrogate fuels. The aim of the combustion LES modeling part was to advance the models for non-premixed and premixed combustion towards a generalized combustion model that covers all combustion regimes. Towards this end, for the premixed regime, a dynamic model for the turbulent burning velocity was developed, which eliminates adjustable coefficients from the premixed combustion model, and a flame structure model was presented, which considers local broadening of the flame preheat zone. Further, based on asymptotic arguments, a formalism to identify the correct combustion regime was developed, which will be an important element in a future generalized combustion-regime independent combustion model. In the second part of the project, several advancements led to a fully automatic chemistry reduction method. New developments include a refined DRGEP method for species and reaction elimination, a chemical lumping procedure, and an automatic procedure for selecting steady state species. Further, several potential surrogate fuel components have been included in the component library, and a reduced JP-8 surrogate mechanism was constructed and tested with experimental data.

Book Large Eddy Simulation of Turbulent Combustion

Download or read book Large Eddy Simulation of Turbulent Combustion written by Heinz Pitsch and published by . This book was released on 2006 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first part of this work, new models for describing sub-grid quantities in reactive LES settings were developed. These models included a new model for the sub-filter variance of a conserved scalar, a new method of filtering the G-equation, a resolution-sensitive description of the turbulent burning velocity, and a flamelet formulation valid near premixed fronts. The models were shown to offer improved predictive capability through application to experimental flames. In the second part, a new method to automatically generate skeletal kinetic mechanisms for surrogate fuels, using the directed relation graph method with error propagation, was developed. These mechanisms are guaranteed to match results obtained using detailed chemistry within a user-defined accuracy for any specified target. They can be combined together to produce adequate chemical models for surrogate fuels. A library containing skeletal mechanisms of various accuracies and domains of applicability was assembled.

Book Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion

Download or read book Adaptive and Convergent Methods for Large Eddy Simulation of Turbulent Combustion written by Colin Russell Heye and published by . This book was released on 2014 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. Significant effort has been made over past decades to improve accuracy and applicability of the LES approach to a wide range of flows, though the current conventions often lack consistency to the problems at hand. To this end, the two main objectives of this dissertation are to develop a dynamic transport equation-based combustion model for large- eddy simulation (LES) of turbulent spray combustion and to investigate grid- independent LES modeling for scalar mixing. Long-standing combustion modeling approaches have shown to be suc- cessful for a wide range of gas-phase flames, however, the assumptions required to derive these formulations are invalidated in the presence of liquid fuels and non-negligible evaporation rates. In the first part of this work, a novel ap- proach is developed to account for these evaporation effects and the resulting multi-regime combustion process. First, the mathematical formulation is de- rived and the numerical implementation in a low-Mach number computational solver is verified against one-dimensional and lab scale, both non-reacting and reacting spray-laden flows. In order to clarify the modeling requirements in LES for spray combustion applications, results from a suite of fully-resolved direct numerical simulations (DNS) of a spray laden planar jet flame are fil- tered at a range of length scales. LES results are then validated against two sets of experimental jet flames, one having a pilot and allowing for reduced chemistry modeling and the second requiring the use of detail chemistry with in situ tabulation to reduce the computational cost of the direct integration of a chemical mechanism. The conventional LES governing equations are derived from a low-pass filtering of the Navier-Stokes equations. In practice, the filter used to derive the LES governing equations is not formally defined and instead, it is assumed that the discretization of LES equations will implicitly act as a low-pass filter. The second part of this study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtering operator, known as explicitly filtered LES. It has been shown that decoupling the filter- ing operation from the underlying grid allows for the isolation of subfilter-scale modeling errors from numerical discretization errors. Specific to combustion modeling are the aggregate errors associated with modeling sub-filter distribu- tions of scalars that are transported by numerical impacted turbulent fields. Quantities of interest to commonly-used combustion models, including sub- filter scalar variance and filtered scalar dissipation rate, are investigated for both homogeneous and shear-driven turbulent mixing.

Book Turbulent Jet Flames

    Book Details:
  • Author : Kian Mehravaran
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2012-03
  • ISBN : 9783848428434
  • Pages : 140 pages

Download or read book Turbulent Jet Flames written by Kian Mehravaran and published by LAP Lambert Academic Publishing. This book was released on 2012-03 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first part of this work, the impact of gravity on transitional and turbulent jet flames is investigated through Direct and Large Eddy Simulations (LES). It is shown that in the absence of gravity, combustion damps the flow instability; hence reduces "turbulence production" and jet growth. However, in the "finite-gravity" conditions, combustion generated density variations may promote turbulence and enhance both the mixing and combustion through buoyancy effects. In the second part, the LES/FMDF model is extended towards multi-step chemistry with realistic thermodynamic properties, such that the predictions could be compared with laboratory flame measurements. The consistency of the Eulerian and the Lagrangian solutions are discussed, and an efficient algorithm for parallelization of the hybrid code is presented. Comparisons with the Sandia's piloted methane jet flames (flame D and F) are performed and good agreements in the case of the near-equilibrium flame D have been achieved with a flamelet-based chemistry model, as well as with multi-step kinetics.

Book Recent Advances in Combustion Modelling

Download or read book Recent Advances in Combustion Modelling written by Bernard Larrouturou and published by World Scientific. This book was released on 1991 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers the contributions of six world experts to a course on combustion modelling. Therefore, a pedagogical effort has been made in writing up these texts, which cover state of the art advances in most aspects of combustion science. The book is aimed at students, researches and engineers, as was the course.

Book Turbulent Premixed Flames

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Book Direct and Large Eddy Simulation X

Download or read book Direct and Large Eddy Simulation X written by Dimokratis G.E. Grigoriadis and published by Springer. This book was released on 2017-10-06 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.

Book Large Eddy Simulations of Turbulence

Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Book Direct and Large Eddy Simulation XI

Download or read book Direct and Large Eddy Simulation XI written by Maria Vittoria Salvetti and published by Springer. This book was released on 2019-02-02 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.