EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Kinetics of Nonequilibrium Low Temperature Plasmas

Download or read book Kinetics of Nonequilibrium Low Temperature Plasmas written by Leon Mikhaĭlovich Biberman and published by Springer. This book was released on 1987-09-30 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first research on plasma was done in connection with the study of electrical discharges in gases. The focus of attention for physicists was the partially ionized plasma, the kinetics of which is governed by various collisional and radiative processes. The choice of this area of research was motivated largely by the practical problems of that time the creation of gas-discharge light sources, rectifiers, and inverters. Since the early 1950s interest in plasma physics has risen sharply, particularly in the study of the completely ionized plasma with its various collective phenomena, insta bilities, and the interesting and sometimes unexpected effects attending the propagation of electromagnetic waves in such a plasma and the action on it of external electric and magnetic fields. Interest in hot plasmas has been stimulated not only by the diverse and novel physical phenomena, but also by the problems arising in connection with controlled nuclear fusion. The advent, in the early 1960s, of new technical fields such as gas-discharge lasers, magnetohydrodynamic generators, thermoemission converters, plasma chemistry, plasma propul sion devices, various methods in plasma technology, etc. , has led to increased interest in weakly ionized low-tempera ture plasmas. This is particularly true of nonequilibrium plasmas, which are characterized by an extraordinary diver sity of states and properties.

Book Kinetics of Nonequilibrium Low Temperature Plasmas

Download or read book Kinetics of Nonequilibrium Low Temperature Plasmas written by L.M. Biberman and published by Springer. This book was released on 2013-05-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first research on plasma was done in connection with the study of electrical discharges in gases. The focus of attention for physicists was the partially ionized plasma, the kinetics of which is governed by various collisional and radiative processes. The choice of this area of research was motivated largely by the practical problems of that time the creation of gas-discharge light sources, rectifiers, and inverters. Since the early 1950s interest in plasma physics has risen sharply, particularly in the study of the completely ionized plasma with its various collective phenomena, insta bilities, and the interesting and sometimes unexpected effects attending the propagation of electromagnetic waves in such a plasma and the action on it of external electric and magnetic fields. Interest in hot plasmas has been stimulated not only by the diverse and novel physical phenomena, but also by the problems arising in connection with controlled nuclear fusion. The advent, in the early 1960s, of new technical fields such as gas-discharge lasers, magnetohydrodynamic generators, thermoemission converters, plasma chemistry, plasma propul sion devices, various methods in plasma technology, etc. , has led to increased interest in weakly ionized low-tempera ture plasmas. This is particularly true of nonequilibrium plasmas, which are characterized by an extraordinary diver sity of states and properties.

Book Plasma Kinetics in Atmospheric Gases

Download or read book Plasma Kinetics in Atmospheric Gases written by M. Capitelli and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.

Book Physics of Non equilibrium Plasmas

Download or read book Physics of Non equilibrium Plasmas written by V. M. Lelevkin and published by Elsevier Science & Technology. This book was released on 1992 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the physics of low temperature plasmas of atomic and molecular gases. Several diagnostic methods for nonequilibrium plasma are described. The relevant elementary processes governing the kinetics and transport of atomic and chemically active molecular plasmas are discussed and numerical models of plasmas aimed at systematically solving MHD-equations are also presented. Intended for use by scientists and engineers active in various fields of low-temperature plasma physics, this book is also suitable for teachers and students at pre- and postgraduate level. In chapter 1 general problems of the elementary physics of plasma are considered and the principal ideas relating to plasma properties are given. In chapter 2 the principles which form the basis of atomic and molecular spectra radiated by a plasma are briefly described. Chapter 3 reviews experimental material associated with the peculiarities of molecular excitation processes in nonequilibrium low-temperature plasma. In chapter 4 a number of problems related to the technique and methods of spectroscopy are considered. Chapter 5 presents experimental material gained from studying the peculiarities of molecular excitation spectra from low-pressure gas discharges and describes diagnostics for nonequilibrium chemically active plasma. In chapter 6 the problems of mathematical modeling of equilibrium plasma in arcs, microwave and optical discharges are analyzed. In chapter 7, a theoretical description of nonequilibrium plasma in electrical arcs, microwave and radio-frequency discharges based on two-temperature approximation of the plasma parameters is offered. Chapter 8 presents a detailed case-study on the transport and excitation of a magnetized plasma of intermediate electron density. Several diagnostic techniques and models introduced in earlier chapters are used to obtain information on plasma properties.

Book Non Equilibrium Air Plasmas at Atmospheric Pressure

Download or read book Non Equilibrium Air Plasmas at Atmospheric Pressure written by K.H. Becker and published by CRC Press. This book was released on 2004-11-29 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressure plasmas in air are of particular importance as they can be generated and maintained without vacuum enclosure and without any additional feed gases. Non-Equilibrium Air Plasmas at Atmospheric Pressure reviews recent advances and applications in the generation and maintenance of atmospheric-pressure plasmas. With contributions from leading international researchers, the coverage includes advances in atmospheric-pressure plasma source development, diagnostics and characterization, air plasma chemistry, modeling and computational techniques, and an assessment of the status and prospects of atmospheric-pressure air plasma applications. The extensive application sections make this book attractive for practitioners in many fields where technologies based on atmospheric-pressure air plasmas are emerging.

Book Spectroscopy of Low Temperature Plasma

Download or read book Spectroscopy of Low Temperature Plasma written by Vladimir N. Ochkin and published by John Wiley & Sons. This book was released on 2009-05-13 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a distinguished plasma scientist and experienced author, this up-to-date work comprehensively covers current methods and new developments and techniques, including non-equilibrium atomic and molecular plasma states, as well as such new applications as gas lasers. Containing numerous appendices with reference data indispensable for plasma spectroscopy, such as statistical weights and partition sums and diatomic molecules. For plasmaphysicists, spectroscopists, materials scientists and physical chemists. Appendix H is only available online.

Book Kinetics and Spectroscopy of Low Temperature Plasmas

Download or read book Kinetics and Spectroscopy of Low Temperature Plasmas written by Alden Aubert and published by . This book was released on 2017-05-15 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics.

Book Fundamental Aspects of Plasma Chemical Physics

Download or read book Fundamental Aspects of Plasma Chemical Physics written by Mario Capitelli and published by Springer Science & Business Media. This book was released on 2015-11-26 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the book will assess fundamental concepts and theoretical formulations, based on a unified methodological approach, and explore the insight in related scientific problems still opened for the research community.

Book Low Temperature Plasma Technology

Download or read book Low Temperature Plasma Technology written by Paul K. Chu and published by CRC Press. This book was released on 2013-07-15 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration i

Book Progress in Nonequilibrium Green s Functions

Download or read book Progress in Nonequilibrium Green s Functions written by Michael Bonitz and published by World Scientific. This book was released on 2000-05-11 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory. Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD. Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, Jörn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin. Contents:Kadanoff–Baym Equations: History and PerspectivesGeneral Problems of Quantum Kinetic TheoryPlasmasSemiconductors. OpticsQuantum Transport in Coulomb SystemsNuclear Matter, Correlations. Bound States. Bose CondensationNumerical Concepts Readership: Graduate students and researchers interested in the theoretical description of quantum many-body systems in nonequilibrium. Keywords:Equilibrium;Nonequilibrium;Many-Body Systems;Optics;Quantum Field Theory;Nonequilibrium Green's Functions;Kadanoff-Baym Equations;Quantum Kinetic Theory;Plasmas;Semiconductors;Quantum Transport;Nuclear Matter

Book Plasma Diagnostics

Download or read book Plasma Diagnostics written by A. A. Ovsyannikov and published by Cambridge Int Science Publishing. This book was released on 2000 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains the results of investigations of electro-physical, chemical, gas-dynamic and other processes in low-temperature plasma and their diagnostics. Both conventional spectral and optical methods of diagnostics and new and laser methods are examined, together with electrostatic probes for investigating rarefied and dense plasma, especially in the presence of chemical reactions. Problems of probe calorimetry of plasma flows are investigated and approaches to measuring the spatial and time characteristics of plasma outlined. Procedural problems of processing experimental data and automating diagnostic experiments are discussed.

Book Methane Conversion

Download or read book Methane Conversion written by D.M. Bibby and published by Elsevier. This book was released on 1988-03-01 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume comprises the invited plenary lectures, contributed and poster papers presented at a symposium organised to mark the successful inauguration of the world's first commercial plant for production of gasoline from natural gas, based on the Mobil methanol-to-gasoline process. The objectives of the Symposium were to present both fundamental research and engineering aspects of the development and commercialization of gas-to-gasoline processes. These include steam reforming, methanol synthesis and methanol-to-gasoline. Possible alternative processes e.g. MOGD, Fischer-Tropsch synthesis of hydrocarbons, and the direct conversion of methane to higher hydrocarbons were also considered. The papers in this volume provide a valuable and extremely wide-ranging overview of current research into the various options for natural gas conversion, giving a detailed description of the gas-to-gasoline process and plant. Together, they represent a unique combination of fundamental surface chemistry catalyst characterization, reaction chemistry and engineering scale-up and commercialization.

Book Laser Ablation

Download or read book Laser Ablation written by E. Fogarassy and published by Newnes. This book was released on 2012-12-02 with total page 943 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the largest conference ever held on this subject. The strong interest in this field is largely due to the fact that both fundamental aspects of laser-surface interaction as well as applied techniques for thin film generation and patterning were treated in detail by experts from around the world.

Book On the Edge of Magnetic Fusion Devices

Download or read book On the Edge of Magnetic Fusion Devices written by Sergei Krasheninnikov and published by Springer Nature. This book was released on 2020-09-07 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

Book Kinetics and Spectroscopy of Low Temperature Plasmas

Download or read book Kinetics and Spectroscopy of Low Temperature Plasmas written by Jorge Loureiro and published by Springer. This book was released on 2016-06-22 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas (LTP) are partially ionized gases with a broad use in many technological applications such as microelectronics, light sources, lasers, biology and medicine. LTPs lead to the production of atomic and molecular excited states, chemically reactive radicals, and activated surface sites, which are in the origin, among others, of the deposition of thin films, advanced nanotechnology products, solar cells, highly efficient combustion motors, and treatment of cancer cells.

Book Theory of Low Temperature Plasma Physics

Download or read book Theory of Low Temperature Plasma Physics written by Shi Nguyen-Kuok and published by Springer. This book was released on 2016-11-11 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the reader an overview of the basic approaches to the theoretical description of low-temperature plasmas, covering numerical methods, mathematical models and modeling techniques. The main methods of calculating the cross sections of plasma particle interaction and the solution of the kinetic Boltzmann equation for determining the transport coefficients of the plasma are also presented. The results of calculations of thermodynamic properties, transport coefficients, the equilibrium particle-interaction cross sections and two-temperature plasmas are also discussed. Later chapters consider applications, and the results of simulation and calculation of plasma parameters in induction and arc plasma torches are presented. The complex physical processes in high-frequency plasmas and arc plasmas, the internal and external parameters of plasma torches, near-electrode processes, heat transfer, the flow of solid particles in plasmas and other phenomena are considered. The book is intended for professionals involved in the theoretical study of low-temperature plasmas and the design of plasma torches, and will be useful for advanced students in related areas.