Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.
Download or read book K3 Surfaces and Their Moduli written by Carel Faber and published by Birkhäuser. This book was released on 2016-04-22 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
Download or read book K3 Surfaces written by Shigeyuki Kondō and published by . This book was released on 2020 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: $K3$ surfaces are a key piece in the classification of complex analytic or algebraic surfaces. The term was coined by A. Weil in 1958 - a result of the initials Kummer, Kähler, Kodaira, and the mountain K2 found in Karakoram. The most famous example is the Kummer surface discovered in the 19th century.$K3$ surfaces can be considered as a 2-dimensional analogue of an elliptic curve, and the theory of periods - called the Torelli-type theorem for $K3$ surfaces - was established around 1970. Since then, several pieces of research on $K3$ surfaces have been undertaken and more recently $K3$ surfaces have even become of interest in theoretical physics.The main purpose of this book is an introduction to the Torelli-type theorem for complex analytic $K3$ surfaces, and its applications. The theory of lattices and their reflection groups is necessary to study $K3$ surfaces, and this book introduces these notions. The book contains, as well as lattices and reflection groups, the classification of complex analytic surfaces, the Torelli-type theorem, the subjectivity of the period map, Enriques surfaces, an application to the moduli space of plane quartics, finite automorphisms of $K3$ surfaces, Niemeier lattices and the Mathieu group, the automorphism group of Kummer surfaces and the Leech lattice.The author seeks to demonstrate the interplay between several sorts of mathematics and hopes the book will prove helpful to researchers in algebraic geometry and related areas, and to graduate students with a basic grounding in algebraic geometry.
Download or read book Complex Analysis and Algebraic Geometry written by Kunihiko Kodaira and published by CUP Archive. This book was released on 1977 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.
Download or read book Compact Complex Surfaces written by W. Barth and published by Springer Science & Business Media. This book was released on 2003-11-13 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.
Download or read book Algebraic Geometry III written by A.N. Parshin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part EMS volume provides a succinct summary of complex algebraic geometry, coupled with a lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties. An excellent companion to the older classics on the subject.
Download or read book Complex Analysis and Geometry written by Vincenzo Ancona and published by CRC Press. This book was released on 1997-04-27 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on two conferences held in Trento, Italy, this volume contains 13 research papers and two survey papers on complex analysis and complex algebraic geometry. The main topics addressed by these leading researchers include: Mori theory polynomial hull vector bundles q-convexity Lie groups and actions on complex spaces hypercomplex structures pseudoconvex domains projective varieties Peer-reviewed and extensively referenced, Complex Analysis and Geometry contains recent advances and important research results. It also details several problems that remain open, the resolution of which could further advance the field.
Download or read book Arithmetic Algebraic Geometry written by Brian David Conrad and published by American Mathematical Soc.. This book was released on with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Download or read book Mirror Symmetry II written by Brian Greene and published by American Mathematical Soc.. This book was released on 1997 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mirror Symmetry has undergone dramatic progress since the Mathematical Sciences Research Institute (MSRI) workshop in 1991, whose proceedings constitute voluem I of this continuing collection. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics. Titles in this series are co-published, between the American Mathematical Society and International Press, Cambridge, MA, USA.
Download or read book Algebraic Surfaces written by Lucian Badescu and published by Springer Science & Business Media. This book was released on 2001-02-08 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fundamentals from the theory of algebraic surfaces, including areas such as rational singularities of surfaces and their relation with Grothendieck duality theory, numerical criteria for contractibility of curves on an algebraic surface, and the problem of minimal models of surfaces. In fact, the classification of surfaces is the main scope of this book and the author presents the approach developed by Mumford and Bombieri. Chapters also cover the Zariski decomposition of effective divisors and graded algebras.
Download or read book Real Enriques Surfaces written by Alexander Degtyarev and published by Springer. This book was released on 2007-05-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
Download or read book The Brauer Grothendieck Group written by Jean-Louis Colliot-Thélène and published by Springer Nature. This book was released on 2021-07-30 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
Download or read book Algebraic Geometry written by Igor V. Dolgachev and published by American Mathematical Soc.. This book was released on 2007 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Korea-Japan Conference on Algebraic Geometry in honor of Igor Dolgachev on his sixtieth birthday. The articles in this volume explore a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered by this volume are algebraic curve theory, algebraic surface theory, moduli space, automorphic forms, Mordell-Weil lattices, and automorphisms of hyperkahler manifolds. This book is an excellent and rich reference source for researchers.
Download or read book Complex Algebraic Surfaces written by Arnaud Beauville and published by Cambridge University Press. This book was released on 1996-06-28 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed over more than a century, and still an active area of research today, the classification of algebraic surfaces is an intricate and fascinating branch of mathematics. In this book Professor BeauviIle gives a lucid and concise account of the subject, following the strategy of F. Enriques, but expressed simply in the language of modern topology and sheaf theory, so as to be accessible to any budding geometer. This volume is self contained and the exercises succeed both in giving the flavour of the extraordinary wealth of examples in the classical subject, and in equipping the reader with most of the techniques needed for research.
Download or read book Higher Dimensional Geometry Over Finite Fields written by D. Kaledin and published by IOS Press. This book was released on 2008-06-05 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number systems based on a finite collection of symbols, such as the 0s and 1s of computer circuitry, are ubiquitous in the modern age. Finite fields are the most important such number systems, playing a vital role in military and civilian communications through coding theory and cryptography. These disciplines have evolved over recent decades, and where once the focus was on algebraic curves over finite fields, recent developments have revealed the increasing importance of higher-dimensional algebraic varieties over finite fields. The papers included in this publication introduce the reader to recent developments in algebraic geometry over finite fields with particular attention to applications of geometric techniques to the study of rational points on varieties over finite fields of dimension of at least 2.
Download or read book Calabi Yau Manifolds and Related Geometries written by Mark Gross and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS
Download or read book The Arithmetic and Geometry of Algebraic Cycles written by B. Brent Gordon and published by American Mathematical Soc.. This book was released on 2000-01-01 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the June 1998 Summer School come 20 contributions that explore algebraic cycles (a subfield of algebraic geometry) from a variety of perspectives. The papers have been organized into sections on cohomological methods, Chow groups and motives, and arithmetic methods. Some specific topics include logarithmic Hodge structures and classifying spaces; Bloch's conjecture and the K-theory of projective surfaces; and torsion zero-cycles and the Abel-Jacobi map over the real numbers.