EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Iwahori Hecke Algebras and Their Representation Theory

Download or read book Iwahori Hecke Algebras and Their Representation Theory written by Ivan Cherednik and published by Springer Science & Business Media. This book was released on 2002-12-19 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.

Book Iwahori Hecke Algebras and Schur Algebras of the Symmetric Group

Download or read book Iwahori Hecke Algebras and Schur Algebras of the Symmetric Group written by Andrew Mathas and published by American Mathematical Soc.. This book was released on 1999 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the $q$-Schur algebras. This book is the first of its kind covering the topic. It offers a substantially simplified treatment of the original proofs. The book is a solid reference source for experts. It will also serve as a good introduction to students and beginning researchers since each chapter contains exercises and there is an appendix containing a quick development of the representation theory of algebras. A second appendix gives tables of decomposition numbers.

Book Iwahori Hecke Algebras and their Representation Theory

Download or read book Iwahori Hecke Algebras and their Representation Theory written by Ivan Cherednik and published by Springer. This book was released on 2003-01-01 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.

Book Characters of Finite Coxeter Groups and Iwahori Hecke Algebras

Download or read book Characters of Finite Coxeter Groups and Iwahori Hecke Algebras written by Meinolf Geck and published by Oxford University Press. This book was released on 2000 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.

Book Lie Groups  Geometry  and Representation Theory

Download or read book Lie Groups Geometry and Representation Theory written by Victor G. Kac and published by Springer. This book was released on 2018-12-12 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)

Book Reflection Groups and Coxeter Groups

Download or read book Reflection Groups and Coxeter Groups written by James E. Humphreys and published by Cambridge University Press. This book was released on 1992-10 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.

Book Representation Theories and Algebraic Geometry

Download or read book Representation Theories and Algebraic Geometry written by A. Broer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 12 lectures presented in Representation Theories and Algebraic Geometry focus on the very rich and powerful interplay between algebraic geometry and the representation theories of various modern mathematical structures, such as reductive groups, quantum groups, Hecke algebras, restricted Lie algebras, and their companions. This interplay has been extensively exploited during recent years, resulting in great progress in these representation theories. Conversely, a great stimulus has been given to the development of such geometric theories as D-modules, perverse sheafs and equivariant intersection cohomology. The range of topics covered is wide, from equivariant Chow groups, decomposition classes and Schubert varieties, multiplicity free actions, convolution algebras, standard monomial theory, and canonical bases, to annihilators of quantum Verma modules, modular representation theory of Lie algebras and combinatorics of representation categories of Harish-Chandra modules.

Book Automorphic Forms on GL  3 TR

Download or read book Automorphic Forms on GL 3 TR written by D. Bump and published by Springer. This book was released on 2006-12-08 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Admissible Dual of GL N  Via Compact Open Subgroups

Download or read book The Admissible Dual of GL N Via Compact Open Subgroups written by Colin John Bushnell and published by Princeton University Press. This book was released on 1993 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work gives a full description of a method for analyzing the admissible complex representations of the general linear group G = Gl(N, F) of a non-Archimedean local field F in terms of the structure of these representations when they are restricted to certain compact open subgroups of G. The authors define a family of representations of these compact open subgroups, which they call simple types. The first example of a simple type, the "trivial type," is the trivial character of an Iwahori subgroup of G. The irreducible representations of G containing the trivial simple type are classified by the simple modules over a classical affine Hecke algebra. Via an isomorphism of Hecke algebras, this classification is transferred to the irreducible representations of G containing a given simple type. This leads to a complete classification of the irreduc-ible smooth representations of G, including an explicit description of the supercuspidal representations as induced representations. A special feature of this work is its virtually complete reliance on algebraic methods of a ring-theoretic kind. A full and accessible account of these methods is given here.

Book Hecke Algebras with Unequal Parameters

Download or read book Hecke Algebras with Unequal Parameters written by George Lusztig and published by American Mathematical Soc.. This book was released on 2003 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over $p$-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives researchers and graduate students working in the theory of algebraic groups and their representations an invaluable insight and a wealth of new and useful information.

Book Affine Hecke Algebras and Orthogonal Polynomials

Download or read book Affine Hecke Algebras and Orthogonal Polynomials written by I. G. Macdonald and published by Cambridge University Press. This book was released on 2003-03-20 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.

Book Modular Representation Theory of Finite Groups

Download or read book Modular Representation Theory of Finite Groups written by Michael John Collins and published by Walter de Gruyter. This book was released on 2001 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Book Representations of Finite Groups of Lie Type

Download or read book Representations of Finite Groups of Lie Type written by François Digne and published by Cambridge University Press. This book was released on 2020-03-05 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.

Book Representations of Reductive Groups

Download or read book Representations of Reductive Groups written by Roger W. Carter and published by Cambridge University Press. This book was released on 1998-09-03 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a very accessible introduction to the representation theory of reductive algebraic groups.

Book Representation Theory and Complex Geometry

Download or read book Representation Theory and Complex Geometry written by Neil Chriss and published by Birkhauser. This book was released on 1997 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of modern advances in representation theory from a geometric standpoint. The techniques developed are quite general and can be applied to other areas such as quantum groups, affine Lie groups, and quantum field theory.

Book Finite Dimensional Algebras and Quantum Groups

Download or read book Finite Dimensional Algebras and Quantum Groups written by Bangming Deng and published by American Mathematical Soc.. This book was released on 2008 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The interplay between finite dimensional algebras and Lie theory dates back many years. In more recent times, these interrelations have become even more strikingly apparent. This text combines, for the first time in book form, the theories of finite dimensional algebras and quantum groups. More precisely, it investigates the Ringel-Hall algebra realization for the positive part of a quantum enveloping algebra associated with a symmetrizable Cartan matrix and it looks closely at the Beilinson-Lusztig-MacPherson realization for the entire quantum $\mathfrak{gl}_n$. The book begins with the two realizations of generalized Cartan matrices, namely, the graph realization and the root datum realization. From there, it develops the representation theory of quivers with automorphisms and the theory of quantum enveloping algebras associated with Kac-Moody Lie algebras. These two independent theories eventually meet in Part 4, under the umbrella of Ringel-Hall algebras. Cartan matrices can also be used to define an important class of groups--Coxeter groups--and their associated Hecke algebras. Hecke algebras associated with symmetric groups give rise to an interesting class of quasi-hereditary algebras, the quantum Schur algebras. The structure of these finite dimensional algebras is used in Part 5 to build the entire quantum $\mathfrak{gl}_n$ through a completion process of a limit algebra (the Beilinson-Lusztig-MacPherson algebra). The book is suitable for advanced graduate students. Each chapter concludes with a series of exercises, ranging from the routine to sketches of proofs of recent results from the current literature."--Publisher's website.

Book Representation Theory of Symmetric Groups

Download or read book Representation Theory of Symmetric Groups written by Pierre-Loic Meliot and published by CRC Press. This book was released on 2017-05-12 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.