Download or read book Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications written by Daniele Bertaccini and published by CRC Press. This book was released on 2018-02-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Download or read book Iterative Methods and Preconditioners for Systems of Linear Equations written by Gabriele Ciaramella and published by SIAM. This book was released on 2022-02-08 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.
Download or read book A Survey of Preconditioned Iterative Methods written by Are Magnus Bruaset and published by Routledge. This book was released on 2018-12-13 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of solving large, sparse, linear systems of algebraic equations is vital in scientific computing, even for applications originating from quite different fields. A Survey of Preconditioned Iterative Methods presents an up to date overview of iterative methods for numerical solution of such systems. Typically, the methods considered are w
Download or read book Iterative Methods for Linear Systems written by Maxim A. Olshanskii and published by SIAM. This book was released on 2014-07-21 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Download or read book Iterative Krylov Methods for Large Linear Systems written by H. A. van der Vorst and published by Cambridge University Press. This book was released on 2003-04-17 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents
Download or read book Matrix Preconditioning Techniques and Applications written by Ke Chen and published by Cambridge University Press. This book was released on 2005-07-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to preconditioning techniques, now an essential part of successful and efficient iterative solutions of matrices.
Download or read book Iterative Methods for Large Linear Systems written by David Ronald Kincaid and published by . This book was released on 1990 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very Good,No Highlights or Markup,all pages are intact.
Download or read book Templates for the Solution of Linear Systems written by Richard Barrett and published by SIAM. This book was released on 1994-01-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Download or read book Parallel Numerical Algorithms written by David E. Keyes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
Download or read book Iterative Methods for Solving Linear Systems written by Anne Greenbaum and published by SIAM. This book was released on 1997-01-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.
Download or read book Numerical Methods for Large Eigenvalue Problems written by Yousef Saad and published by SIAM. This book was released on 2011-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Download or read book Iterative Optimization in Inverse Problems written by Charles Byrne and published by CRC Press. This book was released on 2014-02-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms
Download or read book Applied Iterative Methods written by Louis A. Hageman and published by Elsevier. This book was released on 2014-06-28 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Iterative Methods
Download or read book Sparse Matrix Computations written by James R. Bunch and published by Academic Press. This book was released on 2014-05-10 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Matrix Computations is a collection of papers presented at the 1975 Symposium by the same title, held at Argonne National Laboratory. This book is composed of six parts encompassing 27 chapters that contain contributions in several areas of matrix computations and some of the most potential research in numerical linear algebra. The papers are organized into general categories that deal, respectively, with sparse elimination, sparse eigenvalue calculations, optimization, mathematical software for sparse matrix computations, partial differential equations, and applications involving sparse matrix technology. This text presents research on applied numerical analysis but with considerable influence from computer science. In particular, most of the papers deal with the design, analysis, implementation, and application of computer algorithms. Such an emphasis includes the establishment of space and time complexity bounds and to understand the algorithms and the computing environment. This book will prove useful to mathematicians and computer scientists.
Download or read book Numerical Linear Algebra for High performance Computers written by Jack J. Dongarra and published by SIAM. This book was released on 1998-01-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems.
Download or read book Iterative Methods for Toeplitz Systems written by Michael K. Ng and published by Numerical Mathematics and Scie. This book was released on 2004 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toeplitz and Toeplitz-related systems arise in a variety of applications in mathematics and engineering, especially in signal and image processing.