EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mixed Effects Models for Complex Data

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Book Mixed Models

    Book Details:
  • Author : Eugene Demidenko
  • Publisher : John Wiley & Sons
  • Release : 2013-08-05
  • ISBN : 1118091574
  • Pages : 768 pages

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Book Asymptotic Analysis of Mixed Effects Models

Download or read book Asymptotic Analysis of Mixed Effects Models written by Jiming Jiang and published by CRC Press. This book was released on 2017-09-19 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.

Book Nonlinear Models for Repeated Measurement Data

Download or read book Nonlinear Models for Repeated Measurement Data written by Marie Davidian and published by Routledge. This book was released on 2017-11-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

Book Mixed Effects Models for the Population Approach

Download or read book Mixed Effects Models for the Population Approach written by Marc Lavielle and published by CRC Press. This book was released on 2014-07-14 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects ModelsMixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whol

Book Mixed Models

    Book Details:
  • Author : Eugene Demidenko
  • Publisher : John Wiley & Sons
  • Release : 2013-08-26
  • ISBN : 1118592999
  • Pages : 768 pages

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-26 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Book Mixed Effects Models in S and S PLUS

Download or read book Mixed Effects Models in S and S PLUS written by José C. Pinheiro and published by Springer Science & Business Media. This book was released on 2009-04-15 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: R, linear models, random, fixed, data, analysis, fit.

Book Methods and Applications of Longitudinal Data Analysis

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Book Linear and Nonlinear Models for the Analysis of Repeated Measurements

Download or read book Linear and Nonlinear Models for the Analysis of Repeated Measurements written by Edward Vonesh and published by CRC Press. This book was released on 1996-11-01 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.

Book Nonlinear Regression with R

Download or read book Nonlinear Regression with R written by Christian Ritz and published by Springer Science & Business Media. This book was released on 2008-12-11 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.

Book The SAGE Handbook of Multilevel Modeling

Download or read book The SAGE Handbook of Multilevel Modeling written by Marc A. Scott and published by SAGE. This book was released on 2013-08-31 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.

Book Longitudinal Data Analysis

Download or read book Longitudinal Data Analysis written by Garrett Fitzmaurice and published by CRC Press. This book was released on 2008-08-11 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Book Joint Models for Longitudinal and Time to Event Data

Download or read book Joint Models for Longitudinal and Time to Event Data written by Dimitris Rizopoulos and published by CRC Press. This book was released on 2012-06-22 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/

Book Individualized Drug Therapy for Patients

Download or read book Individualized Drug Therapy for Patients written by Roger W Jelliffe and published by Academic Press. This book was released on 2016-11-15 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Individualized Drug Therapy for Patients: Basic Foundations, Relevant Software and Clinical Applications focuses on quantitative approaches that maximize the precision with which dosage regimens of potentially toxic drugs can hit a desired therapeutic goal. This book highlights the best methods that enable individualized drug therapy and provides specific examples on how to incorporate these approaches using software that has been developed for this purpose. The book discusses where individualized therapy is currently and offers insights to the future. Edited by Roger Jelliffe, MD and Michael Neely, MD, renowned authorities in individualized drug therapy, and with chapters written by international experts, this book provides clinical pharmacologists, pharmacists, and physicians with a valuable and practical resource that takes drug therapy away from a memorized ritual to a thoughtful quantitative process aimed at optimizing therapy for each individual patient. - 2018 PROSE Awards - Honorable Mention, Clinical Medicine: Association of American Publishers - Uses pharmacokinetic approaches as the tools with which therapy is individualized - Provides examples using specific software that illustrate how best to apply these approaches and to make sense of the more sophisticated mathematical foundations upon which this book is based - Incorporates clinical cases throughout to illustrate the real-world benefits of using these approaches - Focuses on quantitative approaches that maximize the precision with which dosage regimens of potentially toxic drugs can hit a desired therapeutic goal

Book Gaussian Process Regression Analysis for Functional Data

Download or read book Gaussian Process Regression Analysis for Functional Data written by Jian Qing Shi and published by CRC Press. This book was released on 2011-07-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri

Book Iterative Methods for Sparse Linear Systems

Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.

Book Statistical Regression Modeling with R

Download or read book Statistical Regression Modeling with R written by Ding-Geng (Din) Chen and published by Springer Nature. This book was released on 2021-04-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.