EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication of Zinc Nitride Thin Films Using RF Magnetron Sputtering Deposition for Optoelectronic Applications

Download or read book Fabrication of Zinc Nitride Thin Films Using RF Magnetron Sputtering Deposition for Optoelectronic Applications written by Ting Wen and published by . This book was released on 2012 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc nitride thin films possess a small optical band gap with direct transition, low resistivity, high mobility and carrier concentration. Therefore, it may be suitable as an optoelectronic material for infrared sensors, smart windows and energy conversion devices. The objective of this work is to grow zinc nitride thin films using RF magnetron sputtering, understand its mechanical, optical, and electrical properties, and investigate its performance as light sensing devices. Synthesis and characterization of zinc nitride thin films has been investigated in this work. An RF magnetron sputtering deposition was employed to synthesize zinc nitride thin films using pure metal zinc target in either N2-Ar or N2-Ar-H2 mixtures. The microstructural, optical and electrical characterizations of the representative films were investigated with stylus profilometry, XRD, AFM, SEM, TEM, UV-VIS-NIR double beam spectrometry, and Hall effect measurement. The photoresponse of the zinc nitride photoconductors was also studied under the irradiation of white light and NIR light. The as-deposited zinc nitride thin films were relatively soft and densely packed with smooth surface. It possesses a narrow optical band gap in the NIR range with direct transition. The zinc nitride showed n-type conductivity with low resistivity and high carrier concentration. To study the RF discharge power effect, the zinc nitride thin films were synthesized at different discharge powers densities. With discharge power density increasing, the film deposition rate increased, and the zinc nitride films acquired better crystalline structure, smaller optical band gap and less oxygen contaminations. After thermal annealing at moderate temperatures in either air or O2, the annealed zinc nitride thin films were photoconductive under irradiation of both NIR light and white light. The largest photoresponse and fastest response times were measured at the room temperature for the zinc nitride thin films annealed at 300 degree in the air. Hydrogen inclusion can modify the electrical and optical properties of crystalline semiconductor films by introducing impurity donor states. The ZnNx:H films deposited in N2-Ar-H2 mixture acquired less oxygen contamination and higher relative nitrogen atom concentration than the ZnNx films deposited in N2-Ar mixture. The as-deposited ZnNx:H films showed a clear photonic behavior under white light irradiation, and the annealed ZnNx:H films exhibited a pronounced change in resistance under both white light and NIR light irradiation comparing to the annealed ZnNx films. This was the first time to report photoresponse of zinc nitride thin films fabricated by reactive sputtering method. The photoconductivity was gradually improved by optimization of deposition conditions, annealing conditions and film compositions.

Book Investigation of Magnesium Indium Oxide Thin Film Fabricated by RF Sputtering System and Their Optoelectronics Applications

Download or read book Investigation of Magnesium Indium Oxide Thin Film Fabricated by RF Sputtering System and Their Optoelectronics Applications written by 陳維德 and published by . This book was released on 2020 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy nitride Films for Electronic and Photovoltaic Applications

Download or read book Reactive Sputtering Deposition and Characterization of Zinc Nitride and Oxy nitride Films for Electronic and Photovoltaic Applications written by Nanke Jiang and published by . This book was released on 2013 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents a study on the fabrication of zinc nitride and zinc oxy-nitride films, and related hetero-structures on glass, silicon and other substrates. The goals of this study include gaining fundamental understanding on the electrical and optical properties, the chemical-bonding states and the micro-structure of these materials and examining their potential for photovoltaic and other electronic and optoelectronic applications. Reactive radio-frequency (RF) magnetron sputtering was used as the deposition method, which potentially enables control of composition of the thin films, as well as fabrication of multilayer structures for the study of possible hetero-junctions between zinc nitride and zinc oxy-nitrides. Along with reactive sputtering, several other fabrication methods, such as thermal evaporation and solution (e.g. silver or carbon paste) painting, were used as auxiliaries where necessary. The characterization techniques employed include (i) x-ray based techniques (x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), energy dispersive x-ray spectroscopy (EDXS)), (ii) optical based methods (spectroscopic ellipsometry (SE), optical spectrophotometry, Raman spectroscopy), (iii) scanning electron microscopy (SEM), and (iv) electrical measurements (resistivity, Hall effect measurements, current-voltage and photovoltaic measurements). The cross-correlation between the deposition/post-deposition conditions and the physical properties of the films was investigated. The deposition conditions, such as the nitrogen (or oxygen) partial concentration in the sputtering gas mixture, substrate temperatures, total deposition pressure, as well as the post-deposition treatments such as thermal treatment and/or oxidation in ambient, were studied in detail. Zinc nitride, with a small fraction of "naturally" incorporated oxygen, is found to be a promising candidate for photovoltaic applications because of its optical and electrical properties. Also, the capability of property tuning for the zinc oxy-nitride material system was demonstrated by intentionally introducing varied amount oxygen into zinc nitride. In order to better understand the crystalline structure and the electronic band structure of these materials, first principle density functional theory (DFT) was used for computations of pure zinc nitride and the doping effects in it with both native elements (Zn, N) and copper family elements (Cu, Ag, Au) as possible p-type dopants. Atomic geometry, formation energy, as well as electronic structure of defects in zinc nitride were studied and a general consistency was observed between theoretically calculated and experimentally determined results. Defect density of states (DOS) suggest that among all three studied copper-family elements, copper is a good candidate for a p-type dopant. Technological insight and approaches to the fabrication of device-relevant structures were the other important outcomes of this work. Our studies showed that the fabrication of device-relevant ohmic contacts, rectifying metal-nitride junctions and p-n junctions was possible. Substantial photovoltaic action was observed in a single junction solar cell configuration that uses p-type zinc oxy-nitride as an absorber layer.

Book Zinc Oxide   A Material for Micro  and Optoelectronic Applications

Download or read book Zinc Oxide A Material for Micro and Optoelectronic Applications written by Norbert H. Nickel and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV.

Book Investigation of Metal Oxide Optoelectronics Device Fabricated by Radio Frequency Magnetron Sputtering and Their Application

Download or read book Investigation of Metal Oxide Optoelectronics Device Fabricated by Radio Frequency Magnetron Sputtering and Their Application written by 李俊毅 and published by . This book was released on 2017 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Zinc Oxide Bulk  Thin Films and Nanostructures

Download or read book Zinc Oxide Bulk Thin Films and Nanostructures written by Chennupati Jagadish and published by Elsevier. This book was released on 2011-10-10 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an in-depth exploration of the following topics, this book covers the broad uses of zinc oxide within the fields of materials science and engineering:- Recent advances in bulk , thin film and nanowire growth of ZnO (including MBE, MOCVD and PLD), - The characterization of the resulting material (including the related ternary systems ZgMgO and ZnCdO), - Improvements in device processing modules (including ion implantation for doping and isolation ,Ohmic and Schottky contacts , wet and dry etching), - The role of impurities and defects on materials properties - Applications of ZnO in UV light emitters/detectors, gas, biological and chemical-sensing, transparent electronics, spintronics and thin film

Book Zinc Oxide Bulk  Thin Films and Nanostructures

Download or read book Zinc Oxide Bulk Thin Films and Nanostructures written by Chennupati Jagadish and published by Elsevier Science Limited. This book was released on 2006 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an in-depth exploration of the following topics, this book covers the broad uses of zinc oxide within the fields of materials science and engineering: - Recent advances in bulk , thin film and nanowire growth of ZnO (including MBE, MOCVD and PLD), - The characterization of the resulting material (including the related ternary systems ZgMgO and ZnCdO), - Improvements in device processing modules (including ion implantation for doping and isolation ,Ohmic and Schottky contacts , wet and dry etching), - The role of impurities and defects on materials properties - Applications of ZnO in UV light emitters/detectors, gas, biological and chemical-sensing, transparent electronics, spintronics and thin film

Book Optimisation of ZnO Thin Films

Download or read book Optimisation of ZnO Thin Films written by Saurabh Nagar and published by Springer. This book was released on 2018-08-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph describes the different implantation mechanisms which can be used to achieve strong, reliable and stable p-type ZnO thin films. The results will prove useful in the field of optoelectronics in the UV region. This book will prove useful to research scholars and professionals working on doping and implantation of ZnO thin films and subsequently fabricating optoelectronic devices. The first chapter of the monograph emphasises the importance of ZnO in the field of optoelectronics for ultraviolet (UV) region and also discusses the material, electronic and optical properties of ZnO. The book then goes on to discuss the optimization of pulsed laser deposited (PLD) ZnO thin films in order to make successful p-type films. This can enable achievement of high optical output required for high-efficiency devices. The book also discusses a hydrogen implantation study on the optimized films to confirm whether the implantation leads to improvement in the optimized results.

Book Investigation of Relationship Between the Plasma and Material Characteristics of Zinc Oxide  ZnO  Thin Film by Radio Frequency  RF  Reactive Magnetron Sputtering

Download or read book Investigation of Relationship Between the Plasma and Material Characteristics of Zinc Oxide ZnO Thin Film by Radio Frequency RF Reactive Magnetron Sputtering written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Electronics with Novel Materials

Download or read book Thin Film Electronics with Novel Materials written by Yiyang Gong and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel materials, including zinc oxide (ZnO) and 2D transition metal dichalcogenides (TMDs), have been investigated in this dissertation for the realization of high-performance large-area integrated circuits. These novel materials may provide differential advantages over the established large-area thin film technology based on silicon, which has been extensively employed in applications such as large-area flat panel displays, high-speed active matrix thin film circuits, flexible and wearable electronics, etc. The dissertation begins with the discussion of high-performance plasma-enhanced atomic layer deposition (PEALD) of ZnO thin films and ZnO thin film transistors (TFTs) with a field effect mobility of ~ 10 to 20 cm2/Vs, which have been demonstrated. Offset-drain ZnO TFTs, which are able to withstand or switch voltage beyond 80 V, have also been demonstrated. These results shed light on the realization of large-area active-matrix circuits beyond the capabilities of the current display industry where high circuit speed or high operation voltage is required. To further improve the performance of ZnO-based electronics, many related materials, including doped ZnO, zinc nitride, and aluminum nitride, have been investigated. Doped ZnO has been proposed as the carrier injection layer that can improve the conductivity of metal-semiconductor contact in ZnO TFTs. Aluminum-doped ZnO thin films have been deposited using triisobutyl aluminum (TIBA) as the dopant precursor instead of trimethyl aluminum (TMA) in order to improve the uniformity of dopant distribution because TIBA has much lower vapor pressure than TMA. AZO thin films with resistivity ~ 10-2 cm have been achieved by PEALD. Besides, aluminum nitride and zinc nitride thin films have also been studied using PEALD. In addition to the showerhead PEALD system, a novel inductively coupled plasma ALD system has been designed and set up that provides RF power up to 500 W in order to generate a highly reactive nitrogen plasma source and enable the deposition of high-quality metal nitride at relatively low temperature. These metal nitride thin films may provide additional building blocks to enhance the speed and thermal stability of ZnO-based thin film devices and circuits.Owing to their excellent electrical and mechanical properties, 2D-TMD thin films have been studied for flexible electronics applications. High quality MoS2 and WS2 thin films have been achieved via mechanical exfoliation and chemical vapor deposition. To fabricate MoS2- and WS2-based TFTs, a 5-step device fabrication process has been developed, which is compatible to both the conventional rigid substrate and the ~ 4.8 nm thick solution-cast polyimide (PI) flexible substrate. The MoS2 and WS2 TFTs fabricated on PI substrate exhibit a field effect mobility of between 1 to 20 cm2/Vs, which is similar to that of those fabricated on rigid silicon substrate. More importantly, extraordinary mechanical strength and stability have been demonstrated for MoS2 and WS2 TFTs fabricated on PI substrate. A reasonably small degradation in device performance has been observed in these flexible 2D-TMD TFTs under static bending to the radius of ~ 2mm and after cyclic bending up to 100,000 cycles. Finally, attempts to create integratable 2D-TMD circuits have been demonstrated. To realize large-area 2D-TMD based circuits, growth of wafer-scale continuous WSe2 thin films has been demonstrated using metal organic chemical vapor deposition (MOCVD). Deposition has been achieved at as low as 400 C, which allows deposition on glass and polymeric substrate and enables the transfer-free fabrication of WSe2 TFTs and circuits on arbitrary platforms. Patterning and post-growth thickness modulation of continuous WSe2 thin film have been demonstrated using CF4 plasma and O2 plasma, whereby high-speed etching and nanometer-scale film thinning can be realized. With the capability of depositing and patterning wafer-scale WSe2 thin films, an array of p-channel WSe2 TFTs have been fabricated with a field effect mobility of ~0.01 cm2/Vs and an on-off ratio greater than 104.