EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigation of Cd free Buffer Layers for CIGSe Thin Film Solar Cells

Download or read book Investigation of Cd free Buffer Layers for CIGSe Thin Film Solar Cells written by 何偉豪 and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells

Download or read book Alternative Buffer Layer Development in Cu In Ga Se2 Thin Film Solar Cells written by Peipei Xin and published by . This book was released on 2017 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. ☐ This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. ☐ First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction interface still limited the device performance. ☐ Second, an investigation of Zn(S,O) buffer layers was completed. Zn(S,O) films were sputtered in Ar using a ZnO0.7S0.3 compound target. Zn(S,O) films had the composition close to the target with S / (S+O) ratio around 0.3. Zn(S,O) films showed the wurtzite structure with the bandgap about 3.2eV. The champion Cu(In,Ga)Se2 / Zn(S,O) cell had 12.5% efficiency and an (Ag,Cu)(In,Ga)Se2 / Zn(S,O) cell achieved 13.2% efficiency. Detailed device analysis was used to study the Cu(In,Ga)Se2 and (Ag,Cu)(In,Ga)Se2 absorbers, the influence of absorber surface treatments, the effects of device treatments, the sputtering damage and the Na concentration in the absorber. ☐ Finally alternative buffer layer development was applied to an innovative superstrate CIGS configuration. The superstrate structure has potential benefits of improved window layer properties, cost reduction, and the possibility to implement back reflector engineering techniques. The application of three buffer layer options – CdS, ZnO and ZnSe was studied and limitations of each were characterized. The best device achieved 8.6% efficiency with a ZnO buffer. GaxOy formation at the junction interface was the main limiting factor of this device performance. For CdS / CIGS and ZnSe / CIGS superstrate devices extensive inter-diffusion between the absorber and buffer layer under CIGS growth conditions was the critical problem. Inter-diffusion severely deteriorated the junction quality and led to poorly behaved devices, despite different efforts to optimize the fabrication process.

Book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells

Download or read book Nanoscale investigation of potential distribution in operating Cu In Ga Se2 thin film solar cells written by Zhenhao Zhang and published by KIT Scientific Publishing. This book was released on 2014-10-16 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The distribution of the electrostatic potential in and between the materials in Cu(In,Ga)Se2 thin-film solar cells has a major impact on their superior performance. This thesis reported on the nanoscale imaging of the electrostatic potential on untreated cross sections of operating Cu(In,Ga)Se2 solar cells using Kelvin probe force microscopy.

Book Investigation of Compound Semiconductors as Buffer layer in Thin Film Solar Cells

Download or read book Investigation of Compound Semiconductors as Buffer layer in Thin Film Solar Cells written by Stephan Friedrich Buecheler and published by . This book was released on 2010 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Investigation of Cds Thin film Solar Cells

Download or read book Investigation of Cds Thin film Solar Cells written by HARSHAW CHEMICAL CO CLEVELAND OHIO. and published by . This book was released on 1965 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research and development of front wall, thin film, flexible, light weight CdS solar cells was continued and decided improvements have been accomplished. A one square foot array shows a power to weight ratio of about 35.0 watts/lb. with an overall area utilization factor of over 0.80. A new chemical barrier formation process was developed providing higher cell efficiences. Exposure of cells to electron, proton and Cobalt 60 radiation show little or no damage. Studies on the formation of the CdS layer indicate a higher degree of preferred orientation and crystallite size as the substrate temperature increases. Crystallites of 100 micron dimension were observed. Optical measurements on the p-layer confirm the conclusion that the barrier layer is a highly conducting copper sulfide. Overlayers of SiO deposited on the cell decrease the rate of water vapor degradation, but mechanical imperfections restrict the thickness of the deposited layer. Theoretical analysis of the experimental data show serious and probably insurmountable problems with application of either a surface state or trap model for the CdS solar cell. (Author).

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Recent Advances in Thin Film Photovoltaics

Download or read book Recent Advances in Thin Film Photovoltaics written by Udai P. Singh and published by Springer Nature. This book was released on 2022-09-02 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Structural and Chemical Analyses of Buffer Layers in Cu In  Ga Se2 Thin film Solar Cells

Download or read book Structural and Chemical Analyses of Buffer Layers in Cu In Ga Se2 Thin film Solar Cells written by Daniel Abou-Ras and published by . This book was released on 2005 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems

Download or read book Proceedings of the 3rd International Conference on Electronic Engineering and Renewable Energy Systems written by Hajji Bekkay and published by Springer Nature. This book was released on 2023-04-11 with total page 1058 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes papers presented at the 3rd International Conference on Electronic Engineering and Renewable Energy (ICEERE 2022), which focus on the application of artificial intelligence techniques, emerging technology and the Internet of things in electrical and renewable energy systems, including hybrid systems, micro-grids, networking, smart health applications, smart grid, mechatronics and electric vehicles. It particularly focuses on new renewable energy technologies for agricultural and rural areas to promote the development of the Euro-Mediterranean region. Given its scope, the book is of interest to graduate students, researchers and practicing engineers working in the fields of electronic engineering and renewable energy.

Book Chemical Bath Deposition of Zn S O  Buffer Layers and Application in Cd free Chalcopyrite Based Thin Film Solar Cells and Modules

Download or read book Chemical Bath Deposition of Zn S O Buffer Layers and Application in Cd free Chalcopyrite Based Thin Film Solar Cells and Modules written by Rodrigo Sáez Araoz and published by . This book was released on 2009 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Study of Molybdenum Oxide as a Back Contact Buffer for Thin Film N CdS p CdTe Solar Cells

Download or read book Study of Molybdenum Oxide as a Back Contact Buffer for Thin Film N CdS p CdTe Solar Cells written by Hao Lin and published by . This book was released on 2012 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Back contact improvement is one of the most crucial issues for the realization of highly efficient n-CdS/p-CdTe solar cells. Conventional methods for making a sufficiently ohmic contact to p-CdTe usually involve a solution etching process and a Cu doping process, which are known to negatively affect the device reliability. To resolve this problem, a low-resistance back contact for n-CdS/p-CdTe solar cells has been developed, which utilizes a vapor-deposited transition metal oxide (TMO) thin film as the back contact buffer layer between p-CdTe and the back electrode. The usefulness of TMO is attributed to its unusually high work function which is needed to match that of p-type CdTe in producing a contact of low resistance. As one major representative of TMO materials, molybdenum oxide (MoOx) has been investigated as a novel buffer in this thesis. First, the processes for making low resistance contact with MoOx buffer are explored. To achieve a good ohmic contact to p-CdTe, a water rinse step is necessary in order to remove surface residues from the CdTe surface prior to MoOx deposition. In addition, different methods for depositing MoOx films have been examined, including thermal evaporation and DC sputtering methods. With MoOx as the high work function buffer, various metals can be used as the electrode to realize an ohmic back contact to p-CdTe. Other advantages of the MoOx buffer include dry application by vacuum deposition, and thus it is particularly suitable for the fabrication of ultra-thin CdTe solar cells without introducing additional shorting defects. Second, the mechanism by which MoOx improves the performance of the back contact is studied through the investigation of Ni/CdTe and Ni/MoOx/CdTe interfaces with x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Contrasting differences in the interface formation and core level structure were observed, indicating that the presence of a thin MoOx inter-layer was effective in reducing the unfavorable reaction between Ni and the native tellurium oxide at the CdTe surface. Finally, the stability of CdTe cells with MoOx buffer is studied. MoOx is found to effectively stabilize the device performance, especially the open-circuit voltage (Voc) of the CdTe solar cell during thermal stress tests. The cell with a Ni-only electrode rapidly degrades due to Ni diffusing into the CdTe film and Ni abstracting Te from CdTe. With the addition of a layer of MoOx as the buffer layer, the diffusion of Ni and the reaction between Ni and CdTe are alleviated, resulting in significantly improved device stability. To summarize, an efficient and stable back contact has been developed through the application of a high work function MoOx as the buffer for p-CdTe. As a result, n-CdS/p-CdTe solar cells with improved efficiency and stability have been realized"--Page viii-ix.

Book Solar Cells and Modules

    Book Details:
  • Author : Arvind Shah
  • Publisher : Springer Nature
  • Release : 2020-07-16
  • ISBN : 3030464873
  • Pages : 357 pages

Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.

Book Hard X ray Photoelectron Spectroscopy  HAXPES

Download or read book Hard X ray Photoelectron Spectroscopy HAXPES written by Joseph Woicik and published by Springer. This book was released on 2015-12-26 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.