EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Investigating Ultrafast Carrier Dynamics in Perovskite Solar Cells with an Extended    conjugated Polymeric Diketopyrrolopyrrole Layer for Hole Transportation

Download or read book Investigating Ultrafast Carrier Dynamics in Perovskite Solar Cells with an Extended conjugated Polymeric Diketopyrrolopyrrole Layer for Hole Transportation written by and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4- c ]pyrrole-1,4-diyl]- alt -[[2,2′-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2- b :4,5- b ′]dithiophene)bis-thieno[3,2- b ]thiophen]-5,5′-diyl]])) for application in perovskite solar cells. The material performance was tested in a solar cell with an optimized configuration, FTO/SnO 2 /perovskite/PBDTP-DTDPP/Au, and the device showed a power conversion efficiency of 14.78%. The device charge carrier dynamics were investigated using transient absorption spectroscopy. The charge separation and recombination kinetics were determined in a device with PBDTP-DTDPP and the obtained results were compared to a reference device. We find that PBDTP-DTDPP enables similar charge separation time (

Book Long lived Charge Carrier Dynamics in Polymer quantum Dot Blends and Organometal Halide Perovskites

Download or read book Long lived Charge Carrier Dynamics in Polymer quantum Dot Blends and Organometal Halide Perovskites written by Hirokazu Nagaoka and published by . This book was released on 2014 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution-processable semiconductors offer a potential route to deploy solar panels on a wide scale, based on the possibility of reduced manufacturing costs by using earth-abundant materials and inexpensive production technologies, such as inkjet or roll-to-roll printing. Understanding the fundamental physics underlying device operation is important to realize this goal. This dissertation describes studies of two kinds of solar cells: hybrid polymer/PbS quantum dot solar cells and organometal halide perovskite solar cells. Chapter two discusses details of the experimental techniques. Chapter three and four explore the mechanisms of charge transfer and energy transfer spectroscopically, and find that both processes contribute to the device photocurrent. Chapter four investigates the important question of how the energy level alignment of quantum dot acceptors affects the operation of hybrid polymer/quantum dot solar cells, by making use of the size-tunable energy levels of PbS quantum dots. We observe that long-lived charge transfer yield is diminished at larger dot sizes as the energy level offset at the polymer/quantum dot interface is changed through decreasing quantum confinement using a combination of spectroscopy and device studies. Chapter five discusses the effects of TiO2 surface chemistry on the performance of organometal halide perovskite solar cells. Specifically, chapter five studies the effect of replacing the conventional TiO2 electrode with Zr-doped TiO2 (Zr-TiO2). We aim to explore the correlation between charge carrier dynamics and device studies by incorporating zirconium into TiO2. We find that, compared to Zr-free controls, solar cells employing Zr-TiO2 give rise to an increase in overall power conversion efficiency, and a decrease in hysteresis. We also observe longer carrier lifetimes and higher charge carrier densities in devices on Zr-TiO2 electrodes at microsecond times in transient photovoltage experiments, as well as at longer persistent photovoltages extending from ~millisecond to tens of sec. Finally, we characterize the combined effects of pyridine treatment and Zr-TiO2 on device performance and carrier lifetimes.

Book Ligand Chemistry and Ultrafast Carrier Dynamics of Perovskite Quantum Well Photovoltaics

Download or read book Ligand Chemistry and Ultrafast Carrier Dynamics of Perovskite Quantum Well Photovoltaics written by Andrew Harald Proppe and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal halide perovskites are solution-processed materials that exhibit remarkable optoelectronic properties combined with the prospect of inexpensive manufacturing. Bulk 3D metal halide perovskite lattices exhibit limited stability, in part a result of ions within their lattice that are labile; and rapid decomposition in the presence of moisture. 3D perovskites can be rendered into two-dimensional perovskite quantum wells (PQWs), and these are stabilized and protected by van der Waals-bonded organic molecular ligands, leading to longer material lifetimes. Mixtures of variably confined PQWs lead to new photophysical properties that have important consequences for light harvesting and light emitting devices. In this thesis I present new ligand chemistry and ultrafast photophysical properties of next-generation mixed dimensionality perovskite materials. First, I use the novel ligand allylammonium to synthesize PQW thin films with superior well width monodispersity compared to conventional ligands. This results in a smooth energy landscape and enhanced photovoltaic performance and is the first study to determine that highly confined PQWs act as traps in otherwise dimensionally pure films. Next, I use another novel ligand, 4-vinylbenzylammonium, to form 2D/3D mixed dimensional heterostructures whose interfaces can be photochemically crosslinked to improve the ambient and operational stability of solar cells, while also improving their performance to exceed 20% PCE. Lastly, I study ultrafast energy and charge transfer processes between mixed PQWs and organic dye ligands. I use ultrafast transient absorption and two-dimensional electronic spectroscopy to determine that interwell exciton transfer occurs on timescales of 100s of femtoseconds, whereas charge transfer occurs over 10s - 100s of picoseconds. When PQWs are synthesized using naphthalenediimide ligands, subpicosecond electron transfer from PQWs to organic ligands is observed, leading to the formation of charge separated states between the organic and inorganic components of the type-II heterostructure. The contributions within this thesis provide new understandings of how PQW ligands can be used to alter ultrafast photoinduced dynamics; tailor molecular interfaces; and control size polydispersity in lead halide perovskite quantum wells towards more efficient and stable optoelectronic devices.

Book Proceedings of  the  First International Workshop on Optical Power Limiting

Download or read book Proceedings of the First International Workshop on Optical Power Limiting written by Francois Kajzar and published by CRC Press. This book was released on 1999 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Charge Carrier Dynamics and Interfaces in Perovskite Solar Cells

Download or read book Charge Carrier Dynamics and Interfaces in Perovskite Solar Cells written by Diana Paola Rueda Delgado and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Physics Of Solar Cells

    Book Details:
  • Author : Jenny A Nelson
  • Publisher : World Scientific Publishing Company
  • Release : 2003-05-09
  • ISBN : 1848168233
  • Pages : 387 pages

Download or read book The Physics Of Solar Cells written by Jenny A Nelson and published by World Scientific Publishing Company. This book was released on 2003-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.

Book Organic Semiconductors for Optoelectronics

Download or read book Organic Semiconductors for Optoelectronics written by Hiroyoshi Naito and published by John Wiley & Sons. This book was released on 2021-08-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.

Book The Future of Semiconductor Oxides in Next Generation Solar Cells

Download or read book The Future of Semiconductor Oxides in Next Generation Solar Cells written by Monica Lira-Cantu and published by Elsevier. This book was released on 2017-09-19 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Future of Semiconductor Oxides in Next-Generation Solar Cells begins with several chapters covering the synthesis of semiconductor oxides for NGSCs. Part II goes on to cover the types and applications of NGSCs currently under development, while Part III brings the two together, covering specific processing techniques for NGSC construction. Finally, Part IV discusses the stability of SO solar cells compared to organic solar cells, and the possibilities offered by hybrid technologies. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of semiconductor oxides in next generation solar cells. - Unlocks the potential of advanced semiconductor oxides to transform Next Generation Solar Cell (NGSC) design - Full coverage of new developments and recent research make this essential reading for researchers and engineers alike - Explains the synthesis and processing of semiconductor oxides with a view to their use in NGSCs

Book Electronic Processes in Organic Semiconductors

Download or read book Electronic Processes in Organic Semiconductors written by Anna Köhler and published by John Wiley & Sons. This book was released on 2015-06-08 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Book Macromolecular Engineering

Download or read book Macromolecular Engineering written by Alex Lubnin and published by Elsevier. This book was released on 2021-02-26 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses - and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods. Presents the theory, principles, architectures, technologies, and latest advances in macromolecular engineering for polymer design and synthesis Explains polymer design for cutting-edge applications areas, including coatings, automotive, industrial, household and medical uses Approaches several novel materials, such as polyisobutylene (PIB), polyamide-based polyurethanes, and aliphatic polyesters

Book Organic Thermoelectric Materials

Download or read book Organic Thermoelectric Materials written by Zhiqun Lin and published by Royal Society of Chemistry. This book was released on 2019-10-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises the significant progress made in organic thermoelectric materials, focusing on effective routes to minimize thermal conductivity and maximize power factor.

Book Printable Mesoscopic Perovskite Solar Cells

Download or read book Printable Mesoscopic Perovskite Solar Cells written by Hongwei Han and published by John Wiley & Sons. This book was released on 2023-06-07 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Mesoscopic Perovskite Solar Cells A comprehensive exploration of printable perovskite solar cells and their potential for commercialization In Printable Mesoscopic Perovskite Solar Cells, a team of distinguished researchers delivers an accessible and incisive discussion of the principles, technologies, and fabrication processes associated with the manufacture and use of perovskite solar cells. The authors detail the properties, characterization methods, and technologies for halide perovskite materials and devices and explain printable processing technologies, mesoscopic anode and cathodes, and spacer layers for printable perovskite solar cells. In the book, you’ll find expansive discussions of the stability issues inherent in perovskite solar cells and explore the potential for scaling and commercializing the printing of perovskite solar cells, complete with real-world industry data. Readers will also find: A thorough introduction to the background and fundamentals of perovskite solar cells Comprehensive explorations of the characterization methods and technologies used with halide perovskite materials and devices Practical discussions of printable processing technologies for perovskite solar cells Fulsome treatments of the stability issues associated with perovskite solar cells and potential solutions for them Perfect for materials scientists, solid state physicists and chemists, and electronics engineers, Printable Mesoscopic Perovskite Solar Cells will also benefit surface chemists and physicists.

Book Printable Solar Cells

    Book Details:
  • Author : Nurdan Demirci Sankir
  • Publisher : John Wiley & Sons
  • Release : 2017-04-19
  • ISBN : 1119283736
  • Pages : 578 pages

Download or read book Printable Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2017-04-19 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Printable Solar Cells The book brings together the recent advances, new and cutting edge materials from solution process and manufacturing techniques that are the key to making photovoltaic devices more efficient and inexpensive. Printable Solar Cells provides an overall view of the new and highly promising materials and thin film deposition techniques for printable solar cell applications. The book is organized in four parts. Organic and inorganic hybrid materials and solar cell manufacturing techniques are covered in Part I. Part II is devoted to organic materials and processing technologies like spray coating. This part also demonstrates the key features of the interface engineering for the printable organic solar cells. The main focus of Part III is the perovskite solar cells, which is a new and promising family of the photovoltaic applications. Finally, inorganic materials and solution based thin film formation methods using these materials for printable solar cell application is discussed in Part IV. Audience The book will be of interest to a multidisciplinary group of fields, in industry and academia, including physics, chemistry, materials science, biochemical engineering, optoelectronic information, photovoltaic and renewable energy engineering, electrical engineering, mechanical and manufacturing engineering.

Book Semiconducting Polymers

Download or read book Semiconducting Polymers written by Georges Hadziioannou and published by John Wiley & Sons. This book was released on 2006-12-15 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of semiconducting polymers has attracted many researchers from a diversity of disciplines. Printed circuitry, flexible electronics and displays are already migrating from laboratory successes to commercial applications, but even now fundamental knowledge is deficient concerning some of the basic phenomena that so markedly influence a device's usefulness and competitiveness. This two-volume handbook describes the various approaches to doped and undoped semiconducting polymers taken with the aim to provide vital understanding of how to control the properties of these fascinating organic materials. Prominent researchers from the fields of synthetic chemistry, physical chemistry, engineering, computational chemistry, theoretical physics, and applied physics cover all aspects from compounds to devices. Since the first edition was published in 2000, significant findings and successes have been achieved in the field, and especially handheld electronic gadgets have become billion-dollar markets that promise a fertile application ground for flexible, lighter and disposable alternatives to classic silicon circuitry. The second edition brings readers up-to-date on cutting edge research in this field.

Book Physics of Solar Cells

    Book Details:
  • Author : Peter Würfel
  • Publisher : John Wiley & Sons
  • Release : 2008-07-11
  • ISBN : 3527618554
  • Pages : 198 pages

Download or read book Physics of Solar Cells written by Peter Würfel and published by John Wiley & Sons. This book was released on 2008-07-11 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Peter Würfel describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. Based on the highly successful German version, but thoroughly revised and updated, this edition contains the latest knowledge on the mechanisms of solar energy conversion. Requiring no more than standard physics knowledge, it enables readers to understand the factors driving conversion efficiency and to apply this knowledge to their own solar cell development.

Book Photoelectrocatalysis

Download or read book Photoelectrocatalysis written by Leonardo Palmisano and published by Elsevier. This book was released on 2022-10-21 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. Presents the fundamentals of photoelectrocatalysis Outlines photoelectrocatalytic green chemistry Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects

Book Solar Cells

Download or read book Solar Cells written by S. K. Sharma and published by Springer Nature. This book was released on 2020-01-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.