Download or read book Inversive Geometry written by Frank Morley and published by Courier Corporation. This book was released on 2014-01-15 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to algebraic geometry makes particular reference to the operation of inversion. Topics include Euclidean group; inversion; quadratics; finite inversive groups; parabolic, hyperbolic, and elliptic geometries; differential geometry; and more. 1933 edition.
Download or read book Inversion Theory and Conformal Mapping written by David E. Blair and published by American Mathematical Soc.. This book was released on 2000-08-17 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Caratheodory with the remarkable result that any circle-preserving transformation is necessarily a Mobius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergraduates and is suitable for a capstone course, topics course, senior seminar or independent study. Students and readers with university courses in differential geometry or complex analysis bring with them background to build on, but such courses are not essential prerequisites.
Download or read book Geometry written by David A. Brannan and published by Cambridge University Press. This book was released on 1999-04-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an undergraduate textbook that reveals the intricacies of geometry. The approach used is that a geometry is a space together with a set of transformations of that space (as argued by Klein in his Erlangen programme). The authors explore various geometries: affine, projective, inversive, non-Euclidean and spherical. In each case the key results are explained carefully, and the relationships between the geometries are discussed. This richly illustrated and clearly written text includes full solutions to over 200 problems, and is suitable both for undergraduate courses on geometry and as a resource for self study.
Download or read book Classical Geometry written by I. E. Leonard and published by John Wiley & Sons. This book was released on 2014-04-30 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.
Download or read book The Legacy of Mario Pieri in Geometry and Arithmetic written by Elena Anne Marchisotto and published by Springer Science & Business Media. This book was released on 2007-12-05 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first in a series of three volumes that comprehensively examine Mario Pieri’s life, mathematical work and influence. The book introduces readers to Pieri’s career and his studies in foundations, from both historical and modern viewpoints. Included in this volume are the first English translations, along with analyses, of two of his most important axiomatizations — one in arithmetic and one in geometry. The book combines an engaging exposition, little-known historical notes, exhaustive references and an excellent index. And yet the book requires no specialized experience in mathematical logic or the foundations of geometry.
Download or read book Geometries and Transformations written by Norman W. Johnson and published by Cambridge University Press. This book was released on 2018-06-07 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.
Download or read book Progress in Inverse Spectral Geometry written by Stig I. Andersson and published by Birkhäuser. This book was released on 2012-12-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.
Download or read book Geometry written by David A. Brannan and published by Cambridge University Press. This book was released on 2011-12-22 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated and clearly written undergraduate textbook captures the excitement and beauty of geometry. The approach is that of Klein in his Erlangen programme: a geometry is a space together with a set of transformations of the space. The authors explore various geometries: affine, projective, inversive, hyperbolic and elliptic. In each case they carefully explain the key results and discuss the relationships between the geometries. New features in this second edition include concise end-of-chapter summaries to aid student revision, a list of further reading and a list of special symbols. The authors have also revised many of the end-of-chapter exercises to make them more challenging and to include some interesting new results. Full solutions to the 200 problems are included in the text, while complete solutions to all of the end-of-chapter exercises are available in a new Instructors' Manual, which can be downloaded from www.cambridge.org/9781107647831.
Download or read book The Geometric Vein written by C. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.
Download or read book In the Tradition of Thurston written by Ken’ichi Ohshika and published by Springer Nature. This book was released on 2020-12-07 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
Download or read book Groups and Geometry written by P. M. Neumann and published by Oxford University Press, USA. This book was released on 1994 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the Oxford Mathematical Institute notes for undergraduate and first-year postgraduates. The first half of the book covers groups, the second half covers geometry and both parts contain a number of exercises.
Download or read book American Journal of Mathematics written by and published by . This book was released on 1926 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Excursions in Geometry written by Charles Stanley Ogilvy and published by Courier Corporation. This book was released on 1990-01-01 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.
Download or read book Modeling of Curves and Surfaces with MATLAB written by Vladimir Rovenski and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
Download or read book Polyhedra and Beyond written by Vera Viana and published by Springer Nature. This book was released on 2022-07-09 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects papers based on talks given at the conference “Geometrias'19: Polyhedra and Beyond”, held in the Faculty of Sciences of the University of Porto between September 5-7, 2019 in Portugal. These papers explore the conference’s theme from an interdisciplinary standpoint, all the while emphasizing the relevance of polyhedral geometry in contemporary academic research and professional practice. They also investigate how this topic connects to mathematics, art, architecture, computer science, and the science of representation. Polyhedra and Beyond will help inspire scholars, researchers, professionals, and students of any of these disciplines to develop a more thorough understanding of polyhedra.
Download or read book A History of Mathematics written by Carl B. Boyer and published by John Wiley & Sons. This book was released on 2011-01-11 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: The updated new edition of the classic and comprehensive guide to the history of mathematics For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincaré Conjecture, in addition to recent advances in areas such as finite group theory and computer-aided proofs. Distills thousands of years of mathematics into a single, approachable volume Covers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the present Includes up-to-date references and an extensive chronological table of mathematical and general historical developments. Whether you're interested in the age of Plato and Aristotle or Poincaré and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 1993-01-31 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.