EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Large Scale Inverse Problems

Download or read book Large Scale Inverse Problems written by Mike Cullen and published by Walter de Gruyter. This book was released on 2013-08-29 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is thesecond volume of a three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" that took placein Linz, Austria, October 3-7, 2011. This volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications. The solution of inverse problems is fundamental to a wide variety of applications such as weather forecasting, medical tomography, and oil exploration. Regularisation techniques are needed to ensure solutions of sufficient quality to be useful, and soundly theoretically based. This book addresses the common techniques required for all the applications, and is thus truly interdisciplinary. Thiscollection of surveyarticlesfocusses onthe large inverse problems commonly arising in simulation and forecasting in the earth sciences. For example, operational weather forecasting models have between 107 and 108 degrees of freedom. Even so, these degrees of freedom represent grossly space-time averaged properties of the atmosphere. Accurate forecasts require accurate initial conditions. With recent developments in satellite data, there are between 106 and 107 observations each day. However, while these also represent space-time averaged properties, the averaging implicit in the measurements is quite different from that used in the models. In atmosphere and ocean applications, there is a physically-based model available which can be used to regularise the problem. We assume that there is a set of observations with known error characteristics available over a period of time. The basic deterministic technique is to fit a model trajectory to the observations over a period of time to within the observation error. Since the model is not perfect the model trajectory has to be corrected, which defines the data assimilation problem. The stochastic view can be expressed by using an ensemble of model trajectories, and calculating corrections to both the mean value and the spread which allow the observations to be fitted by each ensemble member. In other areas of earth science, only the structure of the model formulation itself is known and the aim is to use the past observation history to determine the unknown model parameters. The book records the achievements of Workshop2 "Large-Scale Inverse Problems and Applications in the Earth Sciences". Itinvolves experts in the theory of inverse problems together with experts working on both theoretical and practical aspects of the techniques by which large inverse problems arise in the earth sciences.

Book Inverse Problems and Large Scale Computations

Download or read book Inverse Problems and Large Scale Computations written by Larisa Beilina and published by Springer Science & Business Media. This book was released on 2013-10-01 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a result of two international workshops, namely the Second Annual Workshop on Inverse Problems and the Workshop on Large-Scale Modeling, held jointly in Sunne, Sweden from May 1-6 2012. The subject of the inverse problems workshop was to present new analytical developments and new numerical methods for solutions of inverse problems. The objective of the large-scale modeling workshop was to identify large-scale problems arising in various fields of science and technology and covering all possible applications, with a particular focus on urgent problems in theoretical and applied electromagnetics. The workshops brought together scholars, professionals, mathematicians, and programmers and specialists working in large-scale modeling problems. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.

Book Large Scale Inverse Problems and Quantification of Uncertainty

Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Book Computational Methods for Inverse Problems

Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Book Computational Methods for Inverse Problems in Imaging

Download or read book Computational Methods for Inverse Problems in Imaging written by Marco Donatelli and published by Springer Nature. This book was released on 2019-11-26 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent mathematical methods in the area of inverse problems in imaging with a particular focus on the computational aspects and applications. The formulation of inverse problems in imaging requires accurate mathematical modeling in order to preserve the significant features of the image. The book describes computational methods to efficiently address these problems based on new optimization algorithms for smooth and nonsmooth convex minimization, on the use of structured (numerical) linear algebra, and on multilevel techniques. It also discusses various current and challenging applications in fields such as astronomy, microscopy, and biomedical imaging. The book is intended for researchers and advanced graduate students interested in inverse problems and imaging.

Book Large Scale Inverse Problems and Quantification of Uncertainty

Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by Wiley. This book was released on 2010-11-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: • Brings together the perspectives of researchers in areas of inverse problems and data assimilation. • Assesses the current state-of-the-art and identify needs and opportunities for future research. • Focuses on the computational methods used to analyze and simulate inverse problems. • Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.

Book An Introduction to Inverse Problems with Applications

Download or read book An Introduction to Inverse Problems with Applications written by Francisco Duarte Moura Neto and published by Springer Science & Business Media. This book was released on 2012-09-14 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational engineering/science uses a blend of applications, mathematical models and computations. Mathematical models require accurate approximations of their parameters, which are often viewed as solutions to inverse problems. Thus, the study of inverse problems is an integral part of computational engineering/science. This book presents several aspects of inverse problems along with needed prerequisite topics in numerical analysis and matrix algebra. If the reader has previously studied these prerequisites, then one can rapidly move to the inverse problems in chapters 4-8 on image restoration, thermal radiation, thermal characterization and heat transfer. “This text does provide a comprehensive introduction to inverse problems and fills a void in the literature”. Robert E White, Professor of Mathematics, North Carolina State University

Book Optimization and Regularization for Computational Inverse Problems and Applications

Download or read book Optimization and Regularization for Computational Inverse Problems and Applications written by Yanfei Wang and published by Springer Science & Business Media. This book was released on 2011-06-29 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem. Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book. Dr. Yanfei Wang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. Dr. Sc. Anatoly G. Yagola is a Professor and Assistant Dean of the Physical Faculty, Lomonosov Moscow State University, Russia. Dr. Changchun Yang is a Professor and Vice Director of the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.

Book Optimization and Regularization for Computational Inverse Problems and Applications

Download or read book Optimization and Regularization for Computational Inverse Problems and Applications written by Yanfei Wang and published by Springer. This book was released on 2011-01-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem. Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book. Dr. Yanfei Wang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. Dr. Sc. Anatoly G. Yagola is a Professor and Assistant Dean of the Physical Faculty, Lomonosov Moscow State University, Russia. Dr. Changchun Yang is a Professor and Vice Director of the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.

Book INVERSE PROBLEMS ON LARGE SCALES

Download or read book INVERSE PROBLEMS ON LARGE SCALES written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discrete Inverse Problems

Download or read book Discrete Inverse Problems written by Per Christian Hansen and published by SIAM. This book was released on 2010-01-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.

Book Applications of Data Assimilation and Inverse Problems in the Earth Sciences

Download or read book Applications of Data Assimilation and Inverse Problems in the Earth Sciences written by Alik Ismail-Zadeh and published by Cambridge University Press. This book was released on 2023-06-30 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many contemporary problems within the Earth sciences are complex, and require an interdisciplinary approach. This book provides a comprehensive reference on data assimilation and inverse problems, as well as their applications across a broad range of geophysical disciplines. With contributions from world leading researchers, it covers basic knowledge about geophysical inversions and data assimilation and discusses a range of important research issues and applications in atmospheric and cryospheric sciences, hydrology, geochronology, geodesy, geodynamics, geomagnetism, gravity, near-Earth electron radiation, seismology, and volcanology. Highlighting the importance of research in data assimilation for understanding dynamical processes of the Earth and its space environment and for predictability, it summarizes relevant new advances in data assimilation and inverse problems related to different geophysical fields. Covering both theory and practical applications, it is an ideal reference for researchers and graduate students within the geosciences who are interested in inverse problems, data assimilation, predictability, and numerical methods.

Book Inverse Problem Theory and Methods for Model Parameter Estimation

Download or read book Inverse Problem Theory and Methods for Model Parameter Estimation written by Albert Tarantola and published by SIAM. This book was released on 2005-01-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

Book Computational Methods for Inverse Problems

Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Book Computational Uncertainty Quantification for Inverse Problems

Download or read book Computational Uncertainty Quantification for Inverse Problems written by Johnathan M. Bardsley and published by SIAM. This book was released on 2018-08-01 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to both computational inverse problems and uncertainty quantification (UQ) for inverse problems. The book also presents more advanced material on Bayesian methods and UQ, including Markov chain Monte Carlo sampling methods for UQ in inverse problems. Each chapter contains MATLAB® code that implements the algorithms and generates the figures, as well as a large number of exercises accessible to both graduate students and researchers. Computational Uncertainty Quantification for Inverse Problems is intended for graduate students, researchers, and applied scientists. It is appropriate for courses on computational inverse problems, Bayesian methods for inverse problems, and UQ methods for inverse problems.

Book Theoretical foundation for large scale computations for nonlinear material behavior

Download or read book Theoretical foundation for large scale computations for nonlinear material behavior written by S. Nemat-Nassar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of a workshop on the Theoretical Founda tion for Large-Scale Computations of Nonlinear Material Behavior, held under the auspices of the National Science Foundation (NSF) and the Defense Advance Re search Projects Agency (DARPA), at Northwestern University, October 24-26, 1983. The main objective of this workshop was to provide a forum for the exchange of information and views on major issues relating to the fundamentals of character izing the inelastic constitutive material behavior. Comments on the Aims of the Workshop, by Drs. William Snowden and Thomas Bache, pp. 1-5, outline reasons for holding this workshop, and provide further background. The format of the workshop was designed to optimize the interaction between researchers whose primary interest is material characterization and numerical analysts whose primary interest is the development and practical use of large computer codes. The program of the workshop and a list of the workshop partic ipants are found at the end of these proceedings.

Book Large Scale Scientific Computing

Download or read book Large Scale Scientific Computing written by Deuflhard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the new and rapidly expanding field of scientific computing is understood in a double sense: as computing for scientific and engineering problems and as the science of doing such computations. Thus scientific computing touches at one side mathematical modelling (in the various fields of applications) and at the other side computer science. As soon as the mathematical models de scribe the features of real life processes in sufficient detail, the associated computations tend to be large scale. As a consequence, interest more and more focusses on such numerical methods that can be expected to cope with large scale computational problems. Moreover, given the algorithms which are known to be efficient on a tradi tional computer, the question of implementation on modern supercomputers may get crucial. The present book is the proceedings of a meeting on "Large Scale Scientific Computing" , that was held a t the Oberwolfach Mathematical Institute (July 14-19, 1985) under the auspices of the Sonderforschungsbereich 123 of the University of Heidelberg. Participants included applied scientists with computational interests, numerical analysts, and experts on modern parallel computers. 'l'he purpose of the meeting was to establish a common under standing of recent issues in scientific computing, especially in view of large scale problems. Fields of applications, which have been covered, included semi-conductor design, chemical combustion, flow through porous media, climatology, seismology, fluid dynami. cs, tomography, rheology, hydro power plant optimization, subwil. y control, space technology.