Download or read book Introduction to the Mathematics of Quasicrystals written by Marko V. Jaric and published by Elsevier. This book was released on 2012-12-02 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Mathematics of Quasicrystals provides a pedagogical introduction to mathematical concepts and results necessary for a quantitative description or analysis of quasicrystals. This book is organized into five chapters that cover the three mathematical areas most relevant to quasicrystals, namely, the theory of almost periodic functions, the theory of aperiodic tilings, and group theory. Chapter 1 describes the aspects of the theory of tiling in two- and three-dimensional space that are important for understanding some of the ways in which "classical mathematical crystallography is being generalized; this process is to include possible models for aperiodic crystals. Chapter 2 examines the non-local nature of assembly "mistakes that might have significance to the quasicrystals growth. This chapter also describes how closely a physical quasicrystal might be able to approximate a three-dimensional version of tilings. Chapter 3 discusses the theoretical background and concepts of group theory of icosahedral quasicrystals. Chapter 4 presents the local properties of the three-dimensional Penrose tilings and their global construction is described through the projection method. This chapter emphasizes the relationship between quasiperiodic sets of points and quasiperiodic tiling. Chapter 5 explores the analysis of defects in quasicrystals and their kinetics, as well as some properties of the perfect system. This book is of great value to physicists, crystallographers, metallurgists, and beginners in the field of quasicrystals.
Download or read book Introduction to the Mathematics of Quasicrystals written by Marko V. Jarić and published by . This book was released on 1989 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the Mathematics of Quasicrystals ...
Download or read book Mathematical Theory of Elasticity of Quasicrystals and Its Applications written by Tian-You Fan and published by Springer. This book was released on 2016-09-20 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.
Download or read book Introduction to Quasicrystals written by Marko Jaric and published by Elsevier. This book was released on 2012-12-02 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aperiodicity and Order, Volume 1: Introduction to Quasicrystals deals with various aperiodic types of order in quasicrystals as well as the basic physics of quasicrystalline order and materials. Questions about the nature of order and the order of nature are addressed. This volume is comprised of six chapters; the first of which introduces the reader to icosahedral coordination in metallic crystals, with emphasis on the structural principles of metallic materials that are crystalline and may be expected to carry over to aperiodic materials. The discussion then turns to short- and long-range icosahedral orders in glass, crystals, and quasicrystals. The origins of icosahedral order are explained, and the physical properties of icosahedral materials are described. The chapters that follow focus on the metallurgy of quasicrystals, the crystallography of ideal icosahedral crystals, and stability and deformations in quasicrystalline solids. The book concludes with a discussion on symmetry, elasticity, and hydrodynamics in quasiperiodic structures. A pedagogical review of continuum elastic-hydrodynamic theory for quasicrystals and related structures is presented. This book is intended primarily as an introduction for new students in the field and as a reference for active researchers.
Download or read book Quasicrystals and Geometry written by Marjorie Senechal and published by CUP Archive. This book was released on 1996-09-26 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first-ever detailed account of quasicrystal geometry will be of great value to mathematicians at all levels with an interest in quasicrystals and geometry, and will also be of interest to graduate students and researchers in solid state physics, crystallography and materials science.
Download or read book Crystallography of Quasicrystals written by Steurer Walter and published by Springer Science & Business Media. This book was released on 2009-08-26 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, but it also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.
Download or read book Crystalline Symmetries An Informal Mathematical Introduction written by Marjorie Senechal and published by CRC Press. This book was released on 1990 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystalline Symmetries: an informal mathematical introduction is a guided tour through the maze of mathematical models and classifications that are used today to describe the symmetries of crystals. The mathematical basis of crystallography and the interpretation of The International Tables for X-ray Crystallography are explained in a heuristic and accessible way. In addition to discussing standard crystals, a special feature of this book is the chapter on generalised crystals and the Penrose tile model for the kinds of generalised crystals known as quasicrystals. This fruitful interaction between pure mathematics (symmetry, tilings) and physics should prove invaluable to final year undergraduate/graduate physicists and materials scientists; the reader gets a flavour of the powerful coherence of a group theoretical approach to crystallography. Mathematicians interested in applications of group theory to physical science will also find this book useful.
Download or read book Quasicrystals written by Enrique Maciá-Barber and published by CRC Press. This book was released on 2020-12-18 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: promoting the very notion of quasiperiodic order, and to spur its physical implications and technological capabilities. It, therefore, explores the fundamental aspects of intermetallic, photonic, and phononic quasicrystals, as well as soft-matter quasicrystals, including their intrinsic physical and structural properties. In addition, it thoroughly discusses experimental data and related theoretical approaches to explain them, extending the standard treatment given in most current solid state physics literature. It also explores exciting applications in new technological devices of quasiperiodically ordered systems, including multilayered quasiperiodic systems, along with 2D and 3D designs, whilst outlining new frontiers in quasicrystals research. This book can be used as a reader-friendly introductory text for graduate students, in addition to senior scientists and researchers coming from the fields of physics, chemistry, materials science, and engineering. Key features: • Provides an updated and detailed introduction to the interdisciplinary field of quasicrystals in a tutorial style, considering both fundamental aspects and additional freedom degrees provided by designs based on quasiperiodically ordered materials. • Includes 50 fully worked out exercises with detailed solutions, motivating, and illustrating the different concepts and notions to provide readers with further learning opportunities. • Presents a complete compendium of the current state of the art knowledge of quasicrystalline matter, and outlines future next generation materials based on quasiperiodically ordered designs for their potential use in useful technological devices. Dr. Enrique Maciá-Barber is Professor of condensed matter physics at the Universidad Complutense de Madrid. His research interests include the thermoelectric properties of quasicrystals and DNA biophysics. In 2010 he received the RSEF- BBVA Foundation Excellence Physics Teaching Award. His book Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press, Boca-Raton, 2009) is one of the Top Selling Physics Books according to YBP Library Services.
Download or read book Aperiodic Crystals written by Ted Janssen and published by Oxford University Press, USA. This book was released on 2007-05-24 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most materials and crystals have an atomic structure which is described by a regular stacking of a microscopic fundamental unit, the unit cell. However, there are also many well ordered materials without such a unit cell. This book deals with the structure determination and a discussion of the main special properties of these materials.
Download or read book Mathematics of Aperiodic Order written by Johannes Kellendonk and published by Birkhäuser. This book was released on 2015-06-05 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.
Download or read book Directions in Mathematical Quasicrystals written by Michael Baake and published by American Mathematical Soc.. This book was released on 2000 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume includes twelve solicited articles which survey the current state of knowledge and some of the open questions on the mathematics of aperiodic order. A number of the articles deal with the sophisticated mathematical ideas that are being developed from physical motivations. Many prominent mathematical aspects of the subject are presented, including the geometry of aperiodic point sets and their diffractive properties, self-affine tilings, the role of $C*$-algebras in tiling theory, and the interconnections between symmetry and aperiodic point sets. Also discussed are the question of pure point diffraction of general model sets, the arithmetic of shelling icosahedral quasicrystals, and the study of self-similar measures on model sets. From the physical perspective, articles reflect approaches to the mathematics of quasicrystal growth and the Wulff shape, recent results on the spectral nature of aperiodic Schrödinger operators with implications to transport theory, the characterization of spectra through gap-labelling, and the mathematics of planar dimer models. A selective bibliography with comments is also provided to assist the reader in getting an overview of the field. The book will serve as a comprehensive guide and an inspiration to those interested in learning more about this intriguing subject.
Download or read book Quasicrystals written by J.-B. Suck and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to all aspects of the physics of quasicrystals. The chapters, each written by an expert in this field, cover quasiperiodic tilings and the modeling of the atomic structure of quasicrystals. The electronic density of states and the calculation of the electronic structure play a key role in this introduction, as does an extensive discussion of the atomic dynamics. The study of defects in quasicrystals by high resolution electron microscopy and the computer simulations of defects and fracture in decorated tilings are important subjects for the application of these aperiodic crystals.
Download or read book Aperiodic Order Volume 2 Crystallography and Almost Periodicity written by Michael Baake and published by Cambridge University Press. This book was released on 2017-11-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The mathematics that underlies this discovery or that proceeded from it, known as the theory of Aperiodic Order, is the subject of this comprehensive multi-volume series. This second volume begins to develop the theory in more depth. A collection of leading experts, among them Robert V. Moody, cover various aspects of crystallography, generalising appropriately from the classical case to the setting of aperiodically ordered structures. A strong focus is placed upon almost periodicity, a central concept of crystallography that captures the coherent repetition of local motifs or patterns, and its close links to Fourier analysis. The book opens with a foreword by Jeffrey C. Lagarias on the wider mathematical perspective and closes with an epilogue on the emergence of quasicrystals, written by Peter Kramer, one of the founders of the field.
Download or read book Pisot and Salem Numbers written by Marie J. Bertin and published by Birkhäuser. This book was released on 2012-12-06 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: the attention of The publication of Charles Pisot's thesis in 1938 brought to the mathematical community those marvelous numbers now known as the Pisot numbers (or the Pisot-Vijayaraghavan numbers). Although these numbers had been discovered earlier by A. Thue and then by G. H. Hardy, it was Pisot's result in that paper of 1938 that provided the link to harmonic analysis, as discovered by Raphael Salem and described in a series of papers in the 1940s. In one of these papers, Salem introduced the related class of numbers, now universally known as the Salem numbers. These two sets of algebraic numbers are distinguished by some striking arith metic properties that account for their appearance in many diverse areas of mathematics: harmonic analysis, ergodic theory, dynamical systems and alge braic groups. Until now, the best known and most accessible introduction to these num bers has been the beautiful little monograph of Salem, Algebraic Numbers and Fourier Analysis, first published in 1963. Since the publication of Salem's book, however, there has been much progress in the study of these numbers. Pisot had long expressed the desire to publish an up-to-date account of this work, but his death in 1984 left this task unfulfilled.
Download or read book New Geometries for New Materials written by Eric A. Lord and published by Cambridge University Press. This book was released on 2006-09-21 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2006 book presents the geometrical ideas of structure at the atomic level that are being developed and integrated into materials science. Emphasis is placed on the intuitive understanding of geometrical principles through illustrations not detailed computation. This book will appeal to those working in crystallography, solid-state science and materials science.
Download or read book A Guide to Distribution Theory and Fourier Transforms written by Robert S. Strichartz and published by World Scientific. This book was released on 2003 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.
Download or read book Topological Crystallography written by Toshikazu Sunada and published by Springer Science & Business Media. This book was released on 2012-12-23 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry in ancient Greece is said to have originated in the curiosity of mathematicians about the shapes of crystals, with that curiosity culminating in the classification of regular convex polyhedra addressed in the final volume of Euclid’s Elements. Since then, geometry has taken its own path and the study of crystals has not been a central theme in mathematics, with the exception of Kepler’s work on snowflakes. Only in the nineteenth century did mathematics begin to play a role in crystallography as group theory came to be applied to the morphology of crystals. This monograph follows the Greek tradition in seeking beautiful shapes such as regular convex polyhedra. The primary aim is to convey to the reader how algebraic topology is effectively used to explore the rich world of crystal structures. Graph theory, homology theory, and the theory of covering maps are employed to introduce the notion of the topological crystal which retains, in the abstract, all the information on the connectivity of atoms in the crystal. For that reason the title Topological Crystallography has been chosen. Topological crystals can be described as “living in the logical world, not in space,” leading to the question of how to place or realize them “canonically” in space. Proposed here is the notion of standard realizations of topological crystals in space, including as typical examples the crystal structures of diamond and lonsdaleite. A mathematical view of the standard realizations is also provided by relating them to asymptotic behaviors of random walks and harmonic maps. Furthermore, it can be seen that a discrete analogue of algebraic geometry is linked to the standard realizations. Applications of the discussions in this volume include not only a systematic enumeration of crystal structures, an area of considerable scientific interest for many years, but also the architectural design of lightweight rigid structures. The reader therefore can see the agreement of theory and practice.